NYU physicists find way to explore microscopic systems through holographic video

The technique, developed in the laboratory of NYU Physics Professor David Grier, is comprised of two components: making and recording the images of microscopic systems and then analyzing these images.

To generate and record images, the researchers created a holographic microscope, which is based on a conventional light microscope. But instead of relying on an incandescent illuminator, which conventional microscopes employ, the holographic microscope uses a collimated laser beam—a beam consisting of a series of parallel rays of light and similar to a laser pointer.

When an object is placed into path of the microscope's beam, the object scatters some of the beam's light into a complex diffraction pattern. The scattered light overlaps with the original beam to create an interference pattern reminiscent of overlapping ripples in a pool of water. The microscope then magnifies the resulting pattern of light and dark and records it with a conventional digital video recorder (DVR). Each snapshot in the resulting video stream is a hologram of the original object. Unlike a conventional photograph, each holographic snapshot stores information about the three-dimensional structure and composition of the object that created the scattered light field.

The recorded holograms appear as a pattern of concentric light and dark rings. This resulting pattern contains a wealth of information about the material that originally scattered the light—where it was and what it was comprised of.

Analyzing the images provided a different set of challenges. To do so, the researchers based their work on a quantitative theory explaining the pattern of light that objects scatter. The theory, Lorenz-Mie theory, maintains that the way light is scattered can reveal the size and composition of the object that is scattering it.

“We use that theory to analyze the hologram of each object in the snapshots of our video recording,” explained Grier, who is part of NYU's Center for Soft Matter Research. “Fitting the theory to the hologram of a sphere reveals the three-dimensional position of the sphere's center with remarkable resolution. It allows us to view particles a micrometer in size and with nanometric precision—that is, it captures their traits to within one billionth of a meter.”

“That's a tremendous amount of information to obtain about a micrometer-scale object, particularly when you consider that you get all of that information in each snapshot,” Grier added. “It exceeds other existing technology in terms of tracking particles and characterizing their make-up—and the holographic microscope can do both simultaneously.”

Because the analysis is computationally intensive, the researchers employ the number-crunching power of the graphical processing unit (GPU) used in high-end computer video cards. Originally intended to provide high-resolution video performance for computer games, these cards possess capabilities ideal for the holographic microscope.

The team has already employed the technique for a range of applications, from research in fundamental statistical physics to analyzing the composition of fat droplets in milk.

More broadly, the technique creates a more sophisticated method to aid in medical diagnostics and drug discovery. At its most basic level, research in these areas seeks to understand whether or not certain molecular components, i.e., the building blocks of pharmaceuticals, stick together.

One approach, called a “bead-based assay,” creates micrometer-scale beads whose surfaces have active groups that bind to the target molecule. Because of their small size, the challenge for researchers is to determine if these beads actually stick to the target molecules. The way this is traditionally done is to create yet another molecule—or tag—that binds to the target molecule. This tag molecule, time-consuming and costly to produce, is typically identified by making it fluorescent or radioactive.

The holographic imaging technique, with its magnification and recording capabilities, allows researchers to observe molecular-scale binding without a tag, saving both time and money. Requiring just one microscopic bead to detect one type of molecule, holographic video microscopy promises a previously unattainable level of miniaturization for medical diagnostic tests and creates possibilities for running very large numbers of sensitive medical tests in parallel.

Media Contact

James Devitt EurekAlert!

More Information:

http://www.nyu.edu

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Security vulnerability in browser interface

… allows computer access via graphics card. Researchers at Graz University of Technology were successful with three different side-channel attacks on graphics cards via the WebGPU browser interface. The attacks…

A closer look at mechanochemistry

Ferdi Schüth and his team at the Max Planck Institut für Kohlenforschung in Mülheim/Germany have been studying the phenomena of mechanochemistry for several years. But what actually happens at the…

Severe Vulnerabilities Discovered in Software to Protect Internet Routing

A research team from the National Research Center for Applied Cybersecurity ATHENE led by Prof. Dr. Haya Schulmann has uncovered 18 vulnerabilities in crucial software components of Resource Public Key…

Partners & Sponsors