Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NuSTAR helps untangle how stars explode

20.02.2014
For the first time, an international team of astrophysicists, including Lawrence Livermore National Laboratory scientists, have unraveled how stars blow up in supernova explosions.

Using NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) -- a high-energy X-ray observatory -- the international collaboration created the first-ever map of radioactive material in a supernova remnant, named Cassiopeia A, or Cas A for short. The findings reveal how shock waves likely rip apart massive dying stars, and ultimately end their lives.


The NuSTAR high-energy X-ray observatory captured this image of Cassiopeia A, a remnant that blew up as a supernova more than 11,000 years ago, leaving a dense stellar corpse and its ejected remains. Because the supernova was so far from Earth, the light only reached Earth about 350 years ago, when it may have appeared to be a new, bright star in the sky.

A supernova is the cataclysmic death of a star, which is extremely luminous and causes a burst of radiation that often briefly outshines an entire galaxy before fading from view. The explosion expels much or all of a star's material at a velocity of 10 percent of the speed of light, driving a shock wave into the surrounding interstellar medium. This shock wave sweeps up an expanding shell of gas and dust called a supernova remnant.

"Stars are spherical balls of gas, and so you might think that when they end their lives and explode, that explosion would look like a uniform ball expanding out with great power," said Fiona Harrison, the principal investigator of NuSTAR at the California Institute of Technology and one of the lead authors of a new paper. "Our new results show how the explosion's heart, or engine, is distorted, possibly because the inner regions literally slosh around before detonating."

The research appears in the Feb. 20 issue of the journal Nature.

The Cas A remnant was created when a massive star blew up as a supernova more than 11,000 years ago, leaving a dense stellar corpse and its ejected remains. Because the supernova was so far from Earth, the light only reached Earth about 350 years ago, when it may have appeared to be a new, bright star in the sky.

Supernovae seed the universe with many elements, including gold, calcium and iron. While small stars like our sun die less violent deaths, stars with about eight times the mass of our sun or greater blow up in supernova explosions. The high temperatures and particles created in the blast cause fusion of lighter elements into heavier ones.

NuSTAR is the first telescope capable of producing maps of radioactive material in supernova remnants; in this case, titanium-44, an atom with an unstable nucleus produced at the heart of the exploding star.

"Cas A was a mystery for so long but now with the map of radioactive material, we're getting a more complete picture of the core of the explosion," said Bill Craig, an LLNL scientist now at UC Berkeley and co-author of the paper.

The NuSTAR map of Cas A, which shows the titanium concentrated in clumps at the remnant's center, points to a possible solution to the mystery of how the star met its demise. When researchers simulate supernova blasts with computers, the main shock wave stalls out and the star fails to shatter.

"For NuSTAR, Cas A is special," said Mike Pivovaroff, a LLNL physicist and a co-author on the new paper. "One of NuSTAR's science goals is to map recently synthesized material in young supernova remnants, and Cas A is one of the youngest supernova remnants we know of."

The latest findings strongly suggest the exploding star literally sloshed around, reenergizing the stalled shock wave and allowing the star to blast off its outer layers.

NuSTAR, a NASA Explorer-class mission launched in June of 2012, is uniquely designed to detect the highest-energy X-ray light in great detail. For Livermore, the predecessor to NuSTAR was a balloon-borne instrument known as HEFT (the High Energy Focusing Telescope) that was funded, in part, by a Laboratory Directed Research and Development investment beginning in 2001. NuSTAR takes HEFT's X-ray focusing abilities and sends them beyond Earth's atmosphere on a satellite. The optics principles and the fabrication approach for NuSTAR are based on those developed under the HEFT project. Craig serves as the NuSTAR instrument manager while Pivovaroff and LLNL scientist Julia Vogel are part of the optics team.

Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne M Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Physics and Astronomy:

nachricht First direct observation and measurement of ultra-fast moving vortices in superconductors
20.07.2017 | The Hebrew University of Jerusalem

nachricht Manipulating Electron Spins Without Loss of Information
19.07.2017 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>