Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nuclear spins get in line

14.11.2011
Electrically controlling the magnetic polarization of nuclei offers a new way to store quantum information

Storing information in long-lasting quantum states is a prerequisite for building quantum computers. Intrinsic properties of nuclei known as magnetic spins are good storage candidates because they interact weakly with their environment; however, controlling them is difficult.

Now, researchers in Japan have demonstrated an all-electrical method for preparing the magnetic states of nuclei that would be useful in storing quantum information. Keiji Ono at the RIKEN Advanced Science Institute, Wako, led the work.

In an atomic nucleus, protons and neutrons pair up such that their magnetic spins align in opposite directions. However, in nuclei with an odd number of protons and neutrons, this pairing is incomplete; thus, they have a so-called ‘magnetic moment’ that points in no particular direction, hindering control.

Nuclear spins are difficult to align except at low temperatures and with large magnetic fields. But in devices called quantum dots, Ono and other researchers have shown they can manipulate the nuclear spins electrically. A quantum dot is made from a semiconductor material of just a few tens of nanometers in size. Using an external voltage, the researchers could add electrons to a quantum dot one at time.

Similar to protons and neutrons, a single electron on a quantum dot possesses a spin that acts like an effective magnetic field on the surrounding nuclear spins. Physicists have used this interaction to control nuclear magnetic moments; but, they had only succeeded in significantly polarizing the nuclear moments in one direction. Ono’s team, however, showed that it is possible to polarize the nuclear moments either up or down—a quantum version of the ‘1’ and ‘0’ on a digital bit.

Ono and his team demonstrated this behavior in a double quantum dot—two quantum dots in series—made from the semiconductor gallium-arsenide. They showed they can ‘pump’ the nuclear spins into a particular direction by using voltages to place one electron on each dot and then polarize their spins such that they are either both up, or both down. As the spins on the dot relaxed, they ‘dragged’ the nuclear spins, polarizing them in the process. The nuclei remained polarized for several milliseconds—significantly longer than the polarized states of electron spins in similar devices.

The work offers a new way of controlling nuclear spins, says Ono, who now plans to study the polarization reversal process of the nuclear spins in more detail. Nuclear spins could “become a ubiquitous resource for storing information in a semiconductor,” he adds.

The corresponding author for this highlight is based at the Low Temperature Physics Laboratory, RIKEN Advanced Science Institute

Reference:

Takahashi, R., Kono, K., Tarucha, S. & Ono, K. Voltage-selective bidirectional polarization and coherent rotation of nuclear spins in quantum dots. Physical Review Letters 107, 026602 (2011).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://prl.aps.org/abstract/PRL/v107/i2/e026602
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Applicability of dynamic facilitation theory to binary hard disk systems
08.12.2016 | Nagoya Institute of Technology

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>