Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nuclear magnetic moments

23.12.2010
Nuclear magnetic moment provides a highly sensitive probe into the single-particle structure and serves as a stringent test of nuclear models.

In recent decades, the facilities with radioactive ion beam models to study nuclear magnetic moments make it possible to measure the magnetic moments of neutron-rich and proton-rich nuclei with high precision.

On the theoretical side, many nuclear structure models, including advanced shell models, and self-consistent mean-field theories, have succeeded analyzing many nuclear structure properties. However, the extension of these models to the study of nuclear magnetic moments is quite limited and unsatisfactory. The magnetic dipole moments of most atomic nuclei throughout the periodic table still remain unexplained and the under-lying physics mechanism is not fully understood.

In view of these facts, SCIENCE CHINA: Physics, Mechanics & Astronomy editorial board has invited a number of major theoretical nuclear physicists in the research field of nuclear magnetic moments and related topics to contribute to this special topic. However, due to the page limitation the discussion on the topic presents just a fraction of the progress in this field.

This special issue on "Nuclear magnetic moments and related topics" consists of ten selected papers, which review the progress not only on the theoretical description of nuclear magnetic moments, but also on the recent development of closely related subjects including nuclear pairing, quantum phase transitions as well as nuclear masses in microscopic models. This issue is also intended to identify common goals to deepen understanding of nuclear structure.

In summary, theoretical description of nuclear magnetic moments is one of the long-standing subjects. More important progress will be made in the near future.

Meng Jie | EurekAlert!
Further information:
http://www.pku.edu.cn

More articles from Physics and Astronomy:

nachricht Abrupt motion sharpens x-ray pulses
28.07.2017 | Max-Planck-Institut für Kernphysik

nachricht Physicists Design Ultrafocused Pulses
27.07.2017 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>