Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NRL researchers control the spin of semiconductor quantum dot shell states

Scientists at the Naval Research Laboratory (NRL) have recently demonstrated the ability to control the spin population of the individual quantum shell states of self-assembled indium arsenide (InAs) quantum dots (QDs).

These results are significant in the understanding of QD behavior and scientists' ability to utilize QDs in active devices or for information processing.

The scientists, from NRL's Materials Science and Technology Division, used a spin-polarized bias current from an iron (Fe) thin film contact and determined the strength of the interaction between spin-polarized electrons in the s, p and d shells. A complete description of this work can be found in Physical Review Letters (28 November 2008).

Semiconductor QDs are nanoscale circular disks of one semiconducting material, typically 3 nm high by 30 nm in diameter, embedded within layers of a second material. Figure 1 shows such a structure, with an atomic force microscope image of the uncovered QDs in figure 2. Semiconductor QDs are attractive for a variety of quantum information processing, electronic and spintronic applications. In spintronic applications, the electron's spin rather than charge is used to store and process information. The International Technology Roadmap for Semiconductors has identified the electron's spin as a new state variable which should be explored as an alternative to the electron's charge for use beyond standard CMOS technology. The QD electronic structure exhibits the s,p,d,f shells characteristic of single atoms, so they are often referred to as "artificial atoms."
The NRL researchers monitor the shell population and spin polarization by measuring the polarized light emitted as a function of the bias current from the Fe contact. In contrast with previous work, they resolve features in the electroluminescence (EL) spectra associated with the individual quantum levels (s-, p-, d-, and f- shells). As the bias current is increased, the shell states fill, and the EL from the QDs exhibits peaks characteristic of the shell energies.

Intershell exchange strongly modifies the optical polarization observed from that expected for simple models of shell occupation. From a detailed analysis of the EL spectra, the NRL researchers were able to obtain the first experimental measure of the exchange energies between electrons in the s- and p-shells, and between electrons in the p- and d-shells. These energies describe the degree of interaction between these quantum levels.

Donna McKinney | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>