Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NRL researchers take a step toward valleytronics

28.04.2011
Valley-based electronics, also known as valleytronics, is one step closer to reality.

Two researchers at the Naval Research Laboratory (NRL) have shown that the valley degree of freedom in graphene can be polarized through scattering off a line defect. Unlike previously proposed valley filters in graphene, which rely on confined structures that have proven hard to achieve experimentally, the present work is based on a naturally occurring line defect that has already been observed. The discovery was published in Physical Review Letters on March 28, 2011 and was also the subject of a separate Viewpoint article in Physics.


The band structure of graphene with its two valleys is shown in blue and red. Credit: Naval Research Laboratory

Information in solid-state, either classical or quantum, is generally carried by electrons and holes. The information can be encoded in various degrees of freedom such as charge or spin. Charge representations, for example the absence or presence of an electron in a quantum dot, are attractive as they are easily manipulated and interrogated through electric fields. The advantage of spin representations, used in the field of spintronics, is their superior shielding from undesired electric fluctuations in the environment, making the information in these latter representations more robust. In the future, there might be a third middle-ground alternative in the valley degree of freedom that exists in certain crystals, including graphene.

The valley degree of freedom in graphene gained attention in 2007 when it was proposed that electrons and holes could be filtered according to which valley they occupy. Unfortunately, the structures required for this and subsequent valley filters are difficult to fabricate, and as a result a valley filter has yet to be demonstrated experimentally. The present study from NRL shows that an extended line defect in graphene acts as a natural valley filter. "As the structure is already available, we are hopeful that valley-polarized currents could be generated in the near future" said Dr. Daniel Gunlycke who made the discovery together with Dr. Carter White. Both work in NRL's Chemistry Division.

Valley refers to energy depressions in the band structure, which describes the energies of electron waves allowed by the symmetry of the crystal. For graphene, these regions form two pairs of cones that determine its low-bias response. As a large crystal momentum separates the two valleys, the valley degree of freedom is robust against slowly varying potentials, including scattering caused by low-energy acoustic phonons that often require low-bias electronic devices to operate at low temperatures typically only accessible in laboratories.

Valley polarization is achieved when electrons and holes in one valley are separated spatially from those in the other valley, but this is difficult to do as the two valleys have the same energies. It was found, however, that this spatial separation can be obtained in connected graphene structures that possess reflection symmetry along a particular crystallographic direction with no bonds crossing the reflection plane. This property turns out to be present in a recently observed line defect in graphene. The reflection symmetry only permits electron waves that are symmetric to pass through the line defect. Anti-symmetric waves are reflected. By projecting an arbitrary low-energy wave in graphene onto its symmetric component, one gets the transmission amplitude through this defect, which is strongly dependent on the valley. Electron and hole waves approaching the line defect at a high angle of incidence results in a polarization near 100%.

There is a long way to go before valleytronics can become a viable technology, explains Gunlycke. The recent advance, however, provides a realistic way to reach a crucial milestone in its development. This research was supported by the Office of Naval Research, both directly and through the Naval Research Laboratory.

Donna McKinney | EurekAlert!
Further information:
http://www.nrl.navy.mil

More articles from Physics and Astronomy:

nachricht Neutron star merger directly observed for the first time
17.10.2017 | University of Maryland

nachricht Breaking: the first light from two neutron stars merging
17.10.2017 | American Association for the Advancement of Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>