Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NRL's Large Area Telescope explores high-energy particles

30.07.2009
NASA's Fermi Gamma-ray Space Telescope is making some exciting discoveries about cosmic rays and the Large Area Telescope aboard Fermi is the tool in this investigation. Scientists in the Naval Research Laboratory's (NRL's) Space Science Division were instrumental in the design and development of the Large Area Telescope (LAT).

Cosmic rays are electrons, positrons, and atomic nuclei that move at nearly the speed of light. Astronomers believe that the high-energy cosmic rays originate from exotic places in the galaxy, such as the debris of exploded stars.

The LAT is a wide field-of-view imaging telescope, which consists of a tracker that determines the trajectory of the gamma ray or cosmic ray being measured, and an NRL-developed cesium-iodide calorimeter that determines the energy of the incoming ray. A charged-particle anti-coincidence shield helps filter out unwanted signals, such as those produced by background particles. LAT was developed for detecting gamma rays; however, it is also proving to be a great tool for studying the high-energy electrons in cosmic rays.

Gamma rays travel in straight lines, so scientists are able to pinpoint their sources simply by measuring the direction of each gamma ray as it arrives at the LAT. In contrast, cosmic rays diffuse through our Galaxy, scattering off and spiraling through the turbulent galactic magnetic fields. Because of their movements, scientists find it challenging to determine where the cosmic rays originated. One of Fermi's main goals is determining the sources of cosmic rays.

NRL's highly sensitive LAT measured the energies of more than four million high-energy electrons between August 2008 and January 2009, far more high-energy electrons than have ever been studied before. This extremely large data set allowed scientists to make a precise census of high-energy electrons and led to a surprising excess in the rate of electrons striking the LAT, more than expected from earlier measurements and theoretical models. The LAT data appear to be key to understanding electron measurements made from the European satellite PAMELA and the ground-based High Energy Spectroscopic System located in Namibia.

The Fermi LAT's results indicate that our understanding of the sources and propagation of high-energy particles in the galaxy is incomplete, and they seem to suggest that there is a nearby object beaming cosmic rays in the direction of Earth. Some scientists suggest that a nearby pulsar – the fast-spinning leftover of an exploded star – could be the source sending the electrons and positrons toward Earth. A more exotic possibility is that the particles are evidence of the existence of dark matter. For some time, astrophysicists have suggested that some form of matter – previously undetected and invisible, hence "dark" – exists to provide the extra gravity needed to keep galaxies from whirling apart. While researchers have never directly and conclusively observed dark matter, it could be that the excess electrons LAT observes are the result of interactions or decays of the theorized dark matter particles. Looking ahead, Fermi researchers will be watching for changes in the cosmic ray activity in different parts of the sky. This activity might help them piece together the puzzle in finding the source for the cosmic rays.

NASA's Fermi Gamma-ray Space Telescope is an astrophysics and particle physics partnership mission, developed in collaboration with the U.S. Department of Energy and contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden and the United States.

Donna McKinney | EurekAlert!
Further information:
http://www.nrl.navy.mil

Further reports about: Earth's magnetic field Fermi Gamma-ray LAT Telescope cosmic ray dark matter magnetic field

More articles from Physics and Astronomy:

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>