Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NRL's Large Area Telescope explores high-energy particles

30.07.2009
NASA's Fermi Gamma-ray Space Telescope is making some exciting discoveries about cosmic rays and the Large Area Telescope aboard Fermi is the tool in this investigation. Scientists in the Naval Research Laboratory's (NRL's) Space Science Division were instrumental in the design and development of the Large Area Telescope (LAT).

Cosmic rays are electrons, positrons, and atomic nuclei that move at nearly the speed of light. Astronomers believe that the high-energy cosmic rays originate from exotic places in the galaxy, such as the debris of exploded stars.

The LAT is a wide field-of-view imaging telescope, which consists of a tracker that determines the trajectory of the gamma ray or cosmic ray being measured, and an NRL-developed cesium-iodide calorimeter that determines the energy of the incoming ray. A charged-particle anti-coincidence shield helps filter out unwanted signals, such as those produced by background particles. LAT was developed for detecting gamma rays; however, it is also proving to be a great tool for studying the high-energy electrons in cosmic rays.

Gamma rays travel in straight lines, so scientists are able to pinpoint their sources simply by measuring the direction of each gamma ray as it arrives at the LAT. In contrast, cosmic rays diffuse through our Galaxy, scattering off and spiraling through the turbulent galactic magnetic fields. Because of their movements, scientists find it challenging to determine where the cosmic rays originated. One of Fermi's main goals is determining the sources of cosmic rays.

NRL's highly sensitive LAT measured the energies of more than four million high-energy electrons between August 2008 and January 2009, far more high-energy electrons than have ever been studied before. This extremely large data set allowed scientists to make a precise census of high-energy electrons and led to a surprising excess in the rate of electrons striking the LAT, more than expected from earlier measurements and theoretical models. The LAT data appear to be key to understanding electron measurements made from the European satellite PAMELA and the ground-based High Energy Spectroscopic System located in Namibia.

The Fermi LAT's results indicate that our understanding of the sources and propagation of high-energy particles in the galaxy is incomplete, and they seem to suggest that there is a nearby object beaming cosmic rays in the direction of Earth. Some scientists suggest that a nearby pulsar – the fast-spinning leftover of an exploded star – could be the source sending the electrons and positrons toward Earth. A more exotic possibility is that the particles are evidence of the existence of dark matter. For some time, astrophysicists have suggested that some form of matter – previously undetected and invisible, hence "dark" – exists to provide the extra gravity needed to keep galaxies from whirling apart. While researchers have never directly and conclusively observed dark matter, it could be that the excess electrons LAT observes are the result of interactions or decays of the theorized dark matter particles. Looking ahead, Fermi researchers will be watching for changes in the cosmic ray activity in different parts of the sky. This activity might help them piece together the puzzle in finding the source for the cosmic rays.

NASA's Fermi Gamma-ray Space Telescope is an astrophysics and particle physics partnership mission, developed in collaboration with the U.S. Department of Energy and contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden and the United States.

Donna McKinney | EurekAlert!
Further information:
http://www.nrl.navy.mil

Further reports about: Earth's magnetic field Fermi Gamma-ray LAT Telescope cosmic ray dark matter magnetic field

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>