Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel nanotechnology technique makes table-top production of flat optics a reality

28.01.2016

Researchers from the University of Illinois at Urbana-Champaign have developed a simplified approach to fabricating flat, ultra-thin optics. The new approach enables simple etching without the use of acids or hazardous chemical etching agents.

"Our method brings us closer to making do-it-yourself optics a reality by greatly simplifying the design iteration steps," explained Kimani Toussaint, an associate professor of mechanical science and engineering who led the research published this week in Nature Communications.


Experimentally obtained image of a Fresnel zone plate (left) for focusing light that is fabricated with plasmon-assisted etching. A two-dimensional array of pillar-supported bowtie nanoantennas [zoomed in image (right)] comprises this flat lens.

Credit: University of Illinois

"The process incorporates a nanostructured template that can be used to create many different types of optical components without the need to go into a cleanroom to make a new template each time a new optical component is needed.

"In recent years, the push to foster increased technological innovation and basic scientific and engineering interest from the broadest sectors of society has helped to accelerate the development of do-it-yourself (DIY) components, particularly those related to low-cost microcontroller boards," Toussaint remarked.

"Simplifying and reducing the steps between a basic design and fabrication is the primary attraction of DIY kits, but typically at the expense of quality. We present plasmon-assisted etching as an approach to extend the DIY theme to optics with only a modest tradeoff in quality, specifically, the table-top fabrication of planar optical components."

"Our method uses the intuitive design aspects of diffractive optics by way of simple surface modification, and the electric-field enhancement properties of metal nanoantennas, which are typically the building blocks of metasurfaces," stated Hao Chen, a former postdoctoral researcher in Toussaint's lab and first author of the paper, "Towards do-it-yourself planar optical components using plasmon-assisted etching."

According to Chen, laser light scans the template--a 2D array of gold pillar-supported bowtie nanoantennas (with an area of 80 x 80 square micrometers)--which is submerged in water, in a desired pattern in a microscope. The light-matter interaction, enhanced by the nanoantennas, produces a strong heating effect. As a result, the gold layer of the nanoantennas undergoes thermal expansion that works against its adhesion with their glass substrate. With certain amount of optical power, the force provided by thermal expansion allows the gold layer to break away from the substrate, etching the metal.

"Overall, the workload in the cleanroom is greatly reduced," Chen noted. "Once the template is ready, it is like a paper sheet. You can 'draw' all the optical elements you need on a 'canvas' using a conventional laser-scanning optical microscope."

The study demonstrated fabrication of various ultra-thin (characteristic dimension less than the optical wavelength), flat optical components using the same template. The specific optical components fabricated by the researchers included a flat focusing lens (also known as a Fresnel zone plate) with focal length of ~150 micrometers, a diffraction grating, and a holographic converter that imparts angular momentum to a standard optical beam.

According to the researchers, the PAE method and specialized template could also be used to enable preferential trapping and sorting of particles, to create so-called optofluidic channels "without walls."

Toussaint directs the PROBE laboratory in the Department of Mechanical Science and Engineering at Illinois. In addition to Toussaint and Chen, study co-authors include graduate student Qing Ding, former graduate student Abdul Bhuiya, and Harley T. Johnson, a professor of mechanical science and engineering at Illinois.

Media Contact

Kimani C. Toussaint
ktoussai@illinois.edu
217-244-4088

 @EngineeringAtIL

http://engineering.illinois.edu/ 

Kimani C. Toussaint | EurekAlert!

More articles from Physics and Astronomy:

nachricht Breaking the optical bandwidth record of stable pulsed lasers
24.01.2017 | Institut national de la recherche scientifique - INRS

nachricht European XFEL prepares for user operation: Researchers can hand in first proposals for experiments
24.01.2017 | European XFEL GmbH

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>