Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Notre Dame computer vision experts develop 'questionable observer detector'

12.10.2011
It's become a standard plot device of television detective shows: criminals always return to the scene of the crime.

And law enforcement officials believe that perpetrators of certain crimes, mostly notably arson, do indeed have an inclination to witness their handiwork. Also, U.S. military in the Middle East feel that IED bomb makers return to see the results of their work in order to evolve their designs.

Now a team of University of Notre Dame biometrics experts are developing a crime-fighting tool that can help law enforcement officials identify suspicious individuals at crime scenes.

Kevin Bowyer and Patrick Flynn of Notre Dame's Computer Science and Engineering Department have been researching the feasibility of image-based biometrics since 2001, including first-of-their-kind comparisons of face photographs, face thermograms, 3-D face images, iris images, videos of human gait, and even ear and hand shapes.

While attending a meeting in Washington, D.C, Bowyer listened as military and national security experts discussed the need for a tool to help identify IED bombers in the Middle East.

He decided to join forces with Flynn and Jeremiah Barr, a doctoral student in computer science and engineering, to tackle the challenge he heard expressed at the Washington meeting. The researchers developed a "Questionable Observer Detector (QuOD)" to identify individuals who repeatedly appear in video taken of bystanders at crime scenes.

The challenge was especially daunting because the researchers lacked a data base to compare faces against. Also, many times crime scene videos are shot by witnesses using handheld videos and are often of poor quality. Additionally, many criminals try to disguise their appearance in various ways.

In response, the Notre Dame team focused on an automatic facial recognition tool that didn't need to match people against an existing database of known identities. Instead, Bowyer, Flynn and Barr create "face tracks" for all individuals appearing in a video and repeat the process for all available video clips. The face tracks are compared to determine if any faces from different video clips look similar enough to match each other. When the technology spots a match, it adds it to a group of video appearances featuring just that person. In this way, it attempts to cluster together the pieces of different video clips that represent the same person.

An individual is considered suspicious if he or she appears too frequently in the set of videos. The "too many" number is determined by law enforcement officials based on the number of crimes and videos available.

Although the technology shows great promise, Bowyer, Flynn and Barr admit they still have serious technical challenges they are working to overcome. Optimum facial recognition technology requires high quality lighting and video resolution, which is often unavailable at crime scenes. Also, people may not be looking directly at the camera in video of crowds of bystanders. And the identification of a questionable observer becomes more computationally demanding in cases where there a large number of videos to be analyzed.

The researchers are confident, however, that these challenges can be overcome and are continuing to work to improve their system. They are also confident that civil liberties concerns are minimized and positive social benefit is invovled, given that the tool helps officials identify individuals by their actual presence at multiple crime scenes rather than by suspicion.

Kevin W. Bowyer | EurekAlert!
Further information:
http://www.nd.edu

More articles from Physics and Astronomy:

nachricht Applicability of dynamic facilitation theory to binary hard disk systems
08.12.2016 | Nagoya Institute of Technology

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>