Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Notre Dame computer vision experts develop 'questionable observer detector'

12.10.2011
It's become a standard plot device of television detective shows: criminals always return to the scene of the crime.

And law enforcement officials believe that perpetrators of certain crimes, mostly notably arson, do indeed have an inclination to witness their handiwork. Also, U.S. military in the Middle East feel that IED bomb makers return to see the results of their work in order to evolve their designs.

Now a team of University of Notre Dame biometrics experts are developing a crime-fighting tool that can help law enforcement officials identify suspicious individuals at crime scenes.

Kevin Bowyer and Patrick Flynn of Notre Dame's Computer Science and Engineering Department have been researching the feasibility of image-based biometrics since 2001, including first-of-their-kind comparisons of face photographs, face thermograms, 3-D face images, iris images, videos of human gait, and even ear and hand shapes.

While attending a meeting in Washington, D.C, Bowyer listened as military and national security experts discussed the need for a tool to help identify IED bombers in the Middle East.

He decided to join forces with Flynn and Jeremiah Barr, a doctoral student in computer science and engineering, to tackle the challenge he heard expressed at the Washington meeting. The researchers developed a "Questionable Observer Detector (QuOD)" to identify individuals who repeatedly appear in video taken of bystanders at crime scenes.

The challenge was especially daunting because the researchers lacked a data base to compare faces against. Also, many times crime scene videos are shot by witnesses using handheld videos and are often of poor quality. Additionally, many criminals try to disguise their appearance in various ways.

In response, the Notre Dame team focused on an automatic facial recognition tool that didn't need to match people against an existing database of known identities. Instead, Bowyer, Flynn and Barr create "face tracks" for all individuals appearing in a video and repeat the process for all available video clips. The face tracks are compared to determine if any faces from different video clips look similar enough to match each other. When the technology spots a match, it adds it to a group of video appearances featuring just that person. In this way, it attempts to cluster together the pieces of different video clips that represent the same person.

An individual is considered suspicious if he or she appears too frequently in the set of videos. The "too many" number is determined by law enforcement officials based on the number of crimes and videos available.

Although the technology shows great promise, Bowyer, Flynn and Barr admit they still have serious technical challenges they are working to overcome. Optimum facial recognition technology requires high quality lighting and video resolution, which is often unavailable at crime scenes. Also, people may not be looking directly at the camera in video of crowds of bystanders. And the identification of a questionable observer becomes more computationally demanding in cases where there a large number of videos to be analyzed.

The researchers are confident, however, that these challenges can be overcome and are continuing to work to improve their system. They are also confident that civil liberties concerns are minimized and positive social benefit is invovled, given that the tool helps officials identify individuals by their actual presence at multiple crime scenes rather than by suspicion.

Kevin W. Bowyer | EurekAlert!
Further information:
http://www.nd.edu

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>