Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Notre Dame astrophysicists identify missing fuel for galactic star formation

26.08.2011
The Milky Way will have the fuel to continue forming stars, thanks to massive clouds of ionized gas raining down from its halo and intergalactic space.

This is the conclusion of a new study by Nicolas Lehner and Christopher Howk, faculty in the Department of Physics at the University of Notre Dame. Their report, "A Reservoir of Ionized Gas in the Galactic Halo to Sustain Star Formation in the Milky Way," will be published in Science tomorrow (Aug. 26).

Using the Cosmic Origins Spectrograph, one of the newest instruments on the NASA/ESA Hubble Space Telescope, these researchers measured for the first time the distances to fast-moving clouds of ionized gas previously seen covering a large fraction of the sky. These fast-moving clouds reside in the distant reaches of the Milky Way and contain huge quantities of gas.

The Milky Way would rapidly change its gas into stars if no supply of new matter were available to replenish the gas. Astronomers have hypothesized that the ionized fast-moving gas clouds could be this reservoir of gas, but it was not known if they were interacting with the Milky Way.

"Our findings explain why the Milky Way can keep having star formation," Lehner says. "Knowing the distances to these clouds tells us where the gaseous fuel is for forming stars over billions of years."

Gas clouds can be identified and studied because elements in the cloud absorb small amounts of the light from a star or other light source as it passes through a cloud on its way to the Earth. The characteristic "fingerprint" left in the spectrum allows astronomers to determine the properties of the gas.

Star Formation in the Milky Way

Earlier studies of these fast-moving ionized clouds used light from quasars, which are too far away to mark the clouds' locations. To solve the problem, Lehner and Howk identified 27 stars around the Milky Way, whose distances were known, and used the Hubble to take line-of-sight readings of light coming from them.

Results from the stellar sample showed the ionized clouds largely resided in the Milky Way's halo. The authors concluded that these flows of ionized gas are within about one Galactic radius (40,000 light years) of Earth. The new Hubble observations revealed the presence of ionized gas in half the stellar sample, comparable to the fraction observed toward more distant quasars.

The gas clouds are not uniformly distributed around the Galaxy, but rather collected in different areas. They cover only part of our Galactic sky, analogous to the partial coverage of the sky on a partly cloudy day on Earth. This research also confirmed models that predicted gas falling into the Milky Way slows as it approaches. Clouds closer to the Galaxy seem to have been decelerated and do not move as fast as those farther away, much like a meteorite slowing as it enters the Earth's atmosphere.

"We know now where is the missing fuel for Galactic star formation." Lehner concludes. "We now have to learn how it got there."

Nicholas Lehner | EurekAlert!
Further information:
http://www.nd.edu

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>