Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Not Much Force: Berkeley Researchers Detect Smallest Force Ever Measured

27.06.2014

What is believed to be the smallest force ever measured has been detected by researchers with the Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley.

Using a combination of lasers and a unique optical trapping system that provides a cloud of ultracold atoms, the researchers measured a force of approximately 42 yoctonewtons. A yoctonewton is one septillionth of a newton and there are approximately 3 x 1023 yoctonewtons in one ounce of force.


Mechanical oscillators translate an applied force into measureable mechanical motion. The Standard Quantum Limit is imposed by the Heisenberg uncertainty principle, in which the measurement itself perturbs the motion of the oscillator, a phenomenon known as “quantum back-action.” (Image by Kevin Gutowski)


To measure force, a cloud of atoms (gray oval) are trapped in an optical cavity created by two standing-wave light fields, ODT A and ODT B. The amplitude of ODT B is varied to create a force that is optomechanically transduced onto the phase of a probe light for measurement.

“We applied an external force to the center-of-mass motion of an ultracold atom cloud in a high-finesse optical cavity and measured the resulting motion optically,” says Dan Stamper-Kurn, a physicist who holds joint appointments with Berkeley Lab’s Materials Sciences Division and the UC Berkeley Physics Department. “When the driving force was resonant with the cloud’s oscillation frequency, we achieved a sensitivity that is consistent with theoretical predictions and only a factor of four above the Standard Quantum Limit, the most sensitive measurement that can be made.”

Stamper-Kurn is the corresponding author of a paper in Science that describes these results. The paper is titled “Optically measuring force near the standard quantum limit.” Co-authors are Sydney Schreppler, Nicolas Spethmann, Nathan Brahms, Thierry Botter and Maryrose Barrios.

If you want to confirm the existence of gravitational waves, space-time ripples predicted by Albert Einstein in his theory of general relativity, or want to determine to what extent the law of gravity on the macroscopic scale, as described by Sir Isaac Newton, continues to apply at the microscopic scale, you need to detect and measure forces and motions that are almost incomprehensively tiny. For example, at the Laser Interferometer Gravitational-Wave Observatory (LIGO), scientists are attempting to record motions as small as one thousandth the diameter of a proton.

At the heart of all ultrasensitive detectors of force are mechanical oscillators, systems for translating an applied force into measureable mechanical motion. As measurements of force and motion reach quantum levels in sensitivity, however, they bump up against a barrier imposed by the Heisenberg uncertainty principle, in which the measurement itself perturbs the motion of the oscillator, a phenomenon known as “quantum back-action.” This barrier is called the Standard Quantum Limit (SQL). Over the past couple of decades, a wide array of strategies have been deployed to minimize quantum back-action and get ever closer to the SQL, but the best of these techniques fell short by six to eight orders of magnitude.

“We measured force with a sensitivity that is the closest ever to the SQL,” says Sydney Schreppler, a member of the Stamper-Kurn research group and lead author of the Science paper. “We were able to achieve this sensitivity because our mechanical oscillator is composed of only 1,200 atoms.”

In the experimental set-up used by Schreppler, Stamper-Kurn and their colleagues, the mechanical oscillator element is a gas of rubidium atoms optically trapped and chilled to nearly absolute zero. The optical trap consists of two standing-wave light fields with wavelengths of 860 and 840 nanometers that produce equal and opposite axial forces on the atoms. Center-of-mass motion is induced in the gas by modulating the amplitude of the 840 nanometer light field. The response is measured using a probe beam with a wavelength of 780 nanometers.

“When we apply an external force to our oscillator it is like hitting a pendulum with a bat then measuring the reaction,” says Schreppler. “A key to our sensitivity and approaching the SQL is our ability to decouple the rubidium atoms from their environment and maintain their cold temperature. The laser light we use to trap our atoms isolates them from external environmental noise but does not heat them, so they can remain cold and still enough to allow us to approach the limits of sensitivity when we apply a force.”

Schreppler says it should be possible to get even closer to the SQL for force sensitivity through a combination of colder atoms and improved optical detection efficiency. She also says there are back-action evading techniques that can be taken by performing non-standard measurements. For now, the experimental approach demonstrated in this study provides a means by which scientists trying to detect gravitational waves can compare the limits of their detection abilities to the predicted amplitude and frequency of gravitational waves. For those seeking to determine whether Newtonian gravity applies to the quantum world, they now have a way to test their theories. The enhanced force-sensitivity in this experiment could also point the way to improved atomic force microscopy.

“A scientific paper in 1980 predicted that the SQL might be reached within five years,” Schreppler says. “It took about 30 years longer than predicted, but we now have an experimental set-up capable both of reaching very close to the SQL and of showing the onset of different kinds of obscuring noise away from that SQL.”

This research was supported by the Air Force Office of Scientific Research and the National Science Foundation.

Additional Information

For more about the Dan Stamper-Kurn research group go here

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science.  For more, visit www.lbl.gov.

Lynn Yarris | Eurek Alert!
Further information:
https://newscenter.lbl.gov/2014/06/26/smallest-force-ever-measured/

More articles from Physics and Astronomy:

nachricht Gamma rays will reach beyond the limits of light
23.10.2017 | Chalmers University of Technology

nachricht Creation of coherent states in molecules by incoherent electrons
23.10.2017 | Tata Institute of Fundamental Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>