Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Northwestern Researchers Develop Compact, High-Power Terahertz Source at Room Temperature

Advance in electromagnetic wave technology could aid homeland security, medical imaging, space research, and more

Terahertz (THz) radiation — radiation in the wavelength range of 30 to 300 microns — is gaining attention due to its applications in security screening, medical and industrial imaging, agricultural inspection, astronomical research, and other areas.

A breakthrough by Manijeh Razeghi and her partners triples the output power of a compact, room-temperature terahertz source.

Traditional methods of generating terahertz radiation, however, usually involve large and expensive instruments, some of which also require cryogenic cooling. A compact terahertz source — similar to the laser diode found in a DVD player —operating at room temperature with high power has been a dream device in the terahertz community for decades.

Manijeh Razeghi, Walter P. Murphy Professor of Electrical Engineering and Computer Science at Northwestern University’s McCormick School of Engineering and Applied Science, and her group has brought this dream device closer to reality by developing a compact, room-temperature terahertz source with an output power of 215 microwatts.

Razeghi will present the research October 7 at the International Conference and Exhibition on Lasers, Optics & Photonics in San Antonio, and also at the European Cooperation in Science and Technology conference in Sheffield, England on October 10. The findings were published July 1 in the journal Applied Physics Letters and was presented at the SPIE Optics + Photonics conference in August in San Diego.

Razeghi’s group is a world leader in developing quantum cascade lasers (QCL), compact semiconductor lasers typically emitting in the mid-infrared spectrum (wavelength range of 3 to 16 microns).

Terahertz radiation is generated through nonlinear mixing of two mid-infrared wavelengths at 9.3 microns and 10.4 microns inside a single quantum cascade laser. By stacking two different QCL emitters in a single laser, the researchers created a monolithic nonlinear mixer to convert the mid-infrared signals into terahertz radiation, using a process called difference frequency generation. The size is similar to standard laser diode, and a wide spectral range has already been demonstrated (1 to 4.6 THz).

“Using a room-temperature mid-infrared laser to generate terahertz light bypasses the temperature barrier, and all we need to do is to make the output power high enough for practical applications,” said Razeghi, who leads Northwestern’s Center for Quantum Devices (CQD). “Most applications require a minimum of microwatt power levels, but, of course, the higher the better.”

The achieved output power, 215 microwatts, is more than three times higher than earlier demonstrations. This dramatic boost is due to a number of novelties, including Cherenkov phase matching, epilayer down mounting, symmetric current injection, and anti-reflection coating.

The researchers will now work to achieve continuous wave operation and incorporate tuning in the device.

This work is supported by National Science Foundation (NSF) and National Aeronautics Space Association (NASA).

Megan Fellman | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Gamma ray camera offers new view on ultra-high energy electrons in plasma
28.10.2016 | American Physical Society

nachricht Scientists measure how ions bombard fusion device walls
28.10.2016 | American Physical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>