Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Northwestern Researchers Develop Compact, High-Power Terahertz Source at Room Temperature

10.10.2013
Advance in electromagnetic wave technology could aid homeland security, medical imaging, space research, and more

Terahertz (THz) radiation — radiation in the wavelength range of 30 to 300 microns — is gaining attention due to its applications in security screening, medical and industrial imaging, agricultural inspection, astronomical research, and other areas.


A breakthrough by Manijeh Razeghi and her partners triples the output power of a compact, room-temperature terahertz source.

Traditional methods of generating terahertz radiation, however, usually involve large and expensive instruments, some of which also require cryogenic cooling. A compact terahertz source — similar to the laser diode found in a DVD player —operating at room temperature with high power has been a dream device in the terahertz community for decades.

Manijeh Razeghi, Walter P. Murphy Professor of Electrical Engineering and Computer Science at Northwestern University’s McCormick School of Engineering and Applied Science, and her group has brought this dream device closer to reality by developing a compact, room-temperature terahertz source with an output power of 215 microwatts.

Razeghi will present the research October 7 at the International Conference and Exhibition on Lasers, Optics & Photonics in San Antonio, and also at the European Cooperation in Science and Technology conference in Sheffield, England on October 10. The findings were published July 1 in the journal Applied Physics Letters and was presented at the SPIE Optics + Photonics conference in August in San Diego.

Razeghi’s group is a world leader in developing quantum cascade lasers (QCL), compact semiconductor lasers typically emitting in the mid-infrared spectrum (wavelength range of 3 to 16 microns).

Terahertz radiation is generated through nonlinear mixing of two mid-infrared wavelengths at 9.3 microns and 10.4 microns inside a single quantum cascade laser. By stacking two different QCL emitters in a single laser, the researchers created a monolithic nonlinear mixer to convert the mid-infrared signals into terahertz radiation, using a process called difference frequency generation. The size is similar to standard laser diode, and a wide spectral range has already been demonstrated (1 to 4.6 THz).

“Using a room-temperature mid-infrared laser to generate terahertz light bypasses the temperature barrier, and all we need to do is to make the output power high enough for practical applications,” said Razeghi, who leads Northwestern’s Center for Quantum Devices (CQD). “Most applications require a minimum of microwatt power levels, but, of course, the higher the better.”

The achieved output power, 215 microwatts, is more than three times higher than earlier demonstrations. This dramatic boost is due to a number of novelties, including Cherenkov phase matching, epilayer down mounting, symmetric current injection, and anti-reflection coating.

The researchers will now work to achieve continuous wave operation and incorporate tuning in the device.

This work is supported by National Science Foundation (NSF) and National Aeronautics Space Association (NASA).

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>