Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Northwestern Researchers Develop Compact, High-Power Terahertz Source at Room Temperature

10.10.2013
Advance in electromagnetic wave technology could aid homeland security, medical imaging, space research, and more

Terahertz (THz) radiation — radiation in the wavelength range of 30 to 300 microns — is gaining attention due to its applications in security screening, medical and industrial imaging, agricultural inspection, astronomical research, and other areas.


A breakthrough by Manijeh Razeghi and her partners triples the output power of a compact, room-temperature terahertz source.

Traditional methods of generating terahertz radiation, however, usually involve large and expensive instruments, some of which also require cryogenic cooling. A compact terahertz source — similar to the laser diode found in a DVD player —operating at room temperature with high power has been a dream device in the terahertz community for decades.

Manijeh Razeghi, Walter P. Murphy Professor of Electrical Engineering and Computer Science at Northwestern University’s McCormick School of Engineering and Applied Science, and her group has brought this dream device closer to reality by developing a compact, room-temperature terahertz source with an output power of 215 microwatts.

Razeghi will present the research October 7 at the International Conference and Exhibition on Lasers, Optics & Photonics in San Antonio, and also at the European Cooperation in Science and Technology conference in Sheffield, England on October 10. The findings were published July 1 in the journal Applied Physics Letters and was presented at the SPIE Optics + Photonics conference in August in San Diego.

Razeghi’s group is a world leader in developing quantum cascade lasers (QCL), compact semiconductor lasers typically emitting in the mid-infrared spectrum (wavelength range of 3 to 16 microns).

Terahertz radiation is generated through nonlinear mixing of two mid-infrared wavelengths at 9.3 microns and 10.4 microns inside a single quantum cascade laser. By stacking two different QCL emitters in a single laser, the researchers created a monolithic nonlinear mixer to convert the mid-infrared signals into terahertz radiation, using a process called difference frequency generation. The size is similar to standard laser diode, and a wide spectral range has already been demonstrated (1 to 4.6 THz).

“Using a room-temperature mid-infrared laser to generate terahertz light bypasses the temperature barrier, and all we need to do is to make the output power high enough for practical applications,” said Razeghi, who leads Northwestern’s Center for Quantum Devices (CQD). “Most applications require a minimum of microwatt power levels, but, of course, the higher the better.”

The achieved output power, 215 microwatts, is more than three times higher than earlier demonstrations. This dramatic boost is due to a number of novelties, including Cherenkov phase matching, epilayer down mounting, symmetric current injection, and anti-reflection coating.

The researchers will now work to achieve continuous wave operation and incorporate tuning in the device.

This work is supported by National Science Foundation (NSF) and National Aeronautics Space Association (NASA).

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>