Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First North American antenna enables the ALMA Observatory to do its thing

10.02.2009
ALMA is on its way to developing observational capabilities with resonance 10 times that of the current state of the art

Astronomers today celebrated the formal acceptance of the first North American antenna by the Joint ALMA Observatory. ALMA, the Atacama Large Millimeter/submillimeter Array, is a gathering armada of short-wavelength radio telescopes whose combined power will enable astronomers to probe with unprecedented sharpness phenomena and regions that are beyond the reach of visible-light telescopes.

The observatory is being assembled high in the Chilean Andes by a global partnership.

With ALMA, astronomers will study the universe, the molecular gas and tiny dust grains from which stars, planetary systems, galaxies and even life are formed. ALMA will provide new insights into the formation of stars and planets and will reveal distant galaxies in the early universe, which we will see as they were over 10 billion years ago.

The 12-meter-diameter antenna delivered today is the first of 25 being provided by North America's ALMA partners, whose efforts are led by the National Radio Astronomy Observatory and supported by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada and the National Science Council of Taiwan. The antenna was manufactured by General Dynamics SATCOM Technologies.

The acceptance comes just weeks after the first ALMA antenna--produced under the direction of the National Astronomical Observatory of Japan on behalf of ALMA's East Asian partners--was handed over to the observatory.

"These ALMA antennas are technological marvels," said ALMA Director Thijs de Graauw. "They are more precise and more capable than any ever made. Their performance in the harsh winds and temperatures of our high-altitude site bodes well for the observatory's future."

A single 12-meter antenna's dish is bigger than the largest optical telescope's reflective mirror, but to match the sharpness achieved by an optical telescope, a millimeter-wavelength dish would have to be impossibly large, miles across. ALMA will combine signals from dozens of antennas spread across miles of desert to synthesize the effective sharpness of such a single, gigantic antenna. The process, called "interferometry," involves analysis of the ways in which the signals coming from each antenna interfere with one another.

"This is a major milestone for the ALMA project," explained Philip Puxley, NSF's ALMA program manager. "With two antennas now on site, we begin the real work of combining signals from them. We are advancing toward ALMA's ultimate goal of surpassing by tenfold existing technology in this area for sharper resolution, sensitivity and image quality."

ALMA officials expect the pace of antenna acceptance to accelerate. "We have nine North American antennas on site already," said Adrian Russell, NRAO's ALMA project director. "Following handover of Number Three, we plan to get one through the test procedure each month. Additional North American antennas will be arriving in Chile at a rate of one every two months, and General Dynamics is on track to complete delivery of these systems within days of the original schedule."

The antennas, which each weigh about 100 tons, can be moved to different positions in order to reconfigure the ALMA telescope. This repositioning will be carried out by two custom-designed transporters, each of which is some 33 feet wide, 66 feet long, and has 28 wheels.

When completed early this decade, ALMA will have a total of 66 antennas, with an option for further expansion, provided by partners in North America, Europe and East Asia. The first European antennas, produced under the auspices of the European Organization for Astronomical Research in the Southern Hemisphere are scheduled to begin arriving early this year.

Lisa-Joy Zgorski | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>