Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Nonmagnetic elements form unique magnet


Rice University scientists combine titanium and gold to make itinerant antiferromagnet

Titanium and gold are usually not magnetic and cannot be magnets - unless you combine them just so.

Measurements at Rice University show that a crystalline form of titanium and gold -- TiAu -- becomes magnetic (red peak) at a cold 36 kelvins, about minus 395 degrees Fahrenheit. The Rice lab discovered the material is the first known example of an itinerant antiferromagnet.

Credit: Eteri Svanidze/Rice University

Scientists at Rice University did so and discovered what is a first of its kind: an itinerant antiferromagnetic metal -- TiAu -- made from nonmagnetic constituent elements.

The research by the lab of Rice physicist Emilia Morosan has already been cited as a textbook example of how magnetism arises in metals. While the uses for this particular magnet have yet to be determined, the Rice discovery could enhance the scientific understanding of magnetism.

An open-access paper about the research appears this week in Nature Communications.

This is not the kind of magnet one would stick to a refrigerator. Magnetic order only appears in TiAu when the metal is cooled to 36 kelvins, about minus 395 degrees Fahrenheit.

"Magnetization is a function of temperature," said lead author Eteri Svanidze. "The magnet's ordering temperature appears as an anomaly in the smooth curve we see in such magnetization measurements." For common magnets, that temperature is generally hundreds of degrees Fahrenheit, way hotter than any kitchen. But the energy and temperature scale in unconventional magnets, like the few that have no magnetic elements, are drastically reduced.

Svanidze said the magnets will enhance studies of other important physics, like phase transitions (as in solid-to-liquid or liquid-to-gas) that take place at absolute zero, called quantum phase transitions.

TiAu is only the third known itinerant magnetic metal made with no magnetic elements. The other two, both ferromagnets that activate their magnetic order at temperatures even colder than TiAu, were discovered half a century ago. Part of the reason for the long gap is that TiAu is challenging to make.

"When we started looking, we found out why 50 years had passed without any additional discoveries," Morosan said. "Most other possible candidates were problematic in one way or another. They were hard to make, chemically unstable, toxic or required a high temperature that was not accessible in the lab."

"We had to discard many candidate compounds," said Svanidze, who worked on the project for six years as a Rice graduate student.

But electronic structure calculations showed a 1-to-1 mix of titanium and gold might have the properties they were looking for. "This is not a new material," Svanidze said. "What we found are its magnetic properties, and that's where the interesting physics comes in."

Materials usually become magnetic when exposed to a field that brings the magnetic moments of its atoms into alignment. Think of each atom or ion as a tiny self-contained magnet that can align itself with the neighboring magnetic ions, like the needle of a compass.

The magnetic moment of a material can be local (tied to a specific atom) or itinerant (not bonded to a single atom). Itinerant wanderers can extend their influence over more than one atom, facilitating communications between their "up" or "down" spin states. They also allow for handy things like electrical conductivity in metals.

Atomic moments in local-moment ferromagnets - that is, common magnetic materials - align all of their spins in the same direction. In an antiferromagnet, the atomic moments align in opposite directions.

Morosan said it's important to know these extremes in magnetic behavior. "Theoretically we understand local-moment magnetism quite well, and we have some understanding of the itinerant moment, but most true systems really live in between," she said. "We have to understand the extremes in order to figure out the physics of what's going on in between."

"I think the most significant part is that such a phenomenon is very rare," said Jiakui Wang, another Morosan lab graduate student and co-author of the paper. "This is the first time such an antiferromagnetic material has been discovered, so it is fundamentally significant. It makes our understanding of magnetism deeper."

Morosan said basic scientific discoveries often need time to spawn applications. "My hope is that we can eventually find enough of these systems to understand them better. Then we'll know what we're dealing with so we can make compounds with the exact properties we want."

Co-authors of the paper are Andriy Nevidomskyy, an assistant professor of physics and astronomy at Rice; Tiglet Besara and Theo Siegrist of the National High Magnetic Field Laboratory at Florida State University; Lian Liu, Benjamin Frandsen and Yasutomo Uemura of Columbia University; Quigzhen Huang and Jeffrey Lynn of the National Institute of Standards and Technology, Gaithersburg, Md.; and Monika Gamza and Meigan Aronson of Brookhaven National Laboratory. Morosan is a professor of physics and astronomy, of chemistry and of materials science and nanoengineering.

The research was supported by the National Science Foundation, the Air Force Office of Scientific Research Multidisciplinary University Research Initiative, the Welch Foundation, the Department of Energy, Florida State University, the Japan Atomic Energy Agency and the Friends of Todai Inc. Foundation.

David Ruth

Mike Williams

Read the paper at

This news release can be found online at

Follow Rice News and Media Relations via Twitter @RiceUNews

Related Materials:

Morosan Research Group:

NIST Center for Neutron Research - TiAu: The first itinerant antiferromagnet with no magnetic elements:

Journal Club for Condensed Matter Physics - Magnetism without local moments:

Wiess School of Natural Sciences:

Images for download:

Measurements at Rice University show that a crystalline form of titanium and gold - TiAu - becomes magnetic (red peak) at a cold 36 kelvins, about minus 395 degrees Fahrenheit. The Rice lab discovered the material is the first known example of an itinerant antiferromagnet. (Credit: Eteri Svanidze/Rice University)

Rice University researchers (from left) Emilia Morosan, Eteri Svanidze and Jiakui Wang revealed their discovery of the first itinerant antiferromagnet. (Credit: Jeff Fitlow/Rice University)

Eteri Svanidze looks at a sample of TiAu, the first itinerant antiferromagnet, discovered at Rice University. With her are fellow Rice graduate student Jiakui Wang, top, and physicist Emilia Morosan. (Credit: Jeff Fitlow/Rice University)

A sample of TiAu made in the Morosan lab at Rice University. The material is the first known itinerant antiferromagnet. Its discovery may enhance the scientific understanding of magnetism. (Credit: Jeff Fitlow/Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,888 undergraduates and 2,610 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked among some of the top schools for best quality of life by the Princeton Review and for best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to

Media Contact

David Ruth


David Ruth | EurekAlert!

Further reports about: Titanium antiferromagnetic magnetism materials temperature

More articles from Physics and Astronomy:

nachricht Novel light sources made of 2D materials
28.10.2016 | Julius-Maximilians-Universität Würzburg

nachricht OU-led team discovers rare, newborn tri-star system using ALMA
27.10.2016 | University of Oklahoma

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>