Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nomads of the Galaxy

24.05.2012
Recently, a study was published in the Monthly Notices of the Royal Astronomical Society proposing planets simply adrift in space may be something of a common phenomenon.

Aptly titled “Nomads of the Galaxy,” the authors proposed an upper limit to the number of nomad planets that might exist in the Milky Way Galaxy: 100,000 for every star. And because the Milky Way is estimated to have 200 to 400 billion stars, that could put the number of nomad planets in the quadrillions.

If this proposal is correct, it could be that nomad planets play a dynamic role in the universe. In particular, if life can exist without the warmth of a nearby sun, it raises the possibility that, along with sustaining life, nomad planets could be transporting it as well.

While just an idea, it’s one that becomes more intriguing when considering not only the number of nomad planets, but the behavior of galaxies

"In the 20th century, many eminent scientists have entertained the speculation that life propagated either in a directed, random or malicious way throughout the galaxy,” said Roger D. Blandford, A co-author of the recent study and director of the Kavli Institute for Particle Astrophysics and Cosmology (KIPAC) at Stanford University and the SLAC National Accelerator Laboratory. “One thing that I think modern astronomy might add to that is clear evidence that many galaxies collide and spray material out into intergalactic space. So life can propagate between galaxies too, in principle."

Said Louis E. Strigari, lead author of the study and research associate at KIPAC and the SLAC, "I'm really curious about the exchange of planets between solar systems. How often does it happen, and how far can a nomad planet travel? How many trips around our galaxy does it make? I think these are brand new, basic questions. And I think that's an exciting place to be.”

As for whether a nomad planet could actually sustain life, the proof may be here on Earth. "If you imagine the Earth as it is today becoming a nomad planet... life on Earth is not going to cease,” said Dimitar D. Sasselov, Professor of Astronomy at Harvard University and the Harvard-Smithsonian Center for Astrophysics, and the Director of the Harvard Origins of Life Initiative. “That we know. It's not even speculation at this point. ...[Scientists] already have identified a large number of microbes and even two types of nematodes that survive entirely on the heat that comes from inside the Earth."

The complete discussion between Blandford, Sasselov and Strigari is available at: http://www.kavlifoundation.org/science-spotlights/stanford-kipac-nomads-galaxy

James Cohen | Newswise Science News
Further information:
http://www.kavlifoundation.org

Further reports about: Astrophysics Earth's magnetic field Galaxy KIPAC Milky Way solar system

More articles from Physics and Astronomy:

nachricht Mars 2020 mission to use smart methods to seek signs of past life
17.08.2017 | Goldschmidt Conference

nachricht Gold shines through properties of nano biosensors
17.08.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>