Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

No evidence of the double nature of neutrinos

05.06.2014

The Majorana nature of neutrinos and the neutrinoless double-beta decay

Neutrinos are tiny, neutral elementary particles that, contrary to the standard model of physics, have been proven to have mass. One possible explanation for this mass could be that neutrinos are their own antiparticles, so-called Majorana particles.


This image shows the insertion of the EXO-200 detector into the cryostat 650 meters below ground at the Waste Isolation Pilot Plant (WIPP) near Carlsbad (New Mexico).

Credit: SLAC

Though experimental evidence for this is still lacking, many theoretical extensions of the standard model of physics predict the Majorana nature of neutrinos. If this hypothesis proves to be true, many previously unanswered questions about the origin of our universe and the origin of matter could be answered.

650 meters of shielding

In the EXO-200 experiment (Enriched Xenon Observatory), which is operated in the U.S. state of New Mexico, 650 meters below the earth's surface, scientists are looking for the evidence. Physicists from the research group of Professor Peter Fierlinger of the Excellence Cluster Universe at the Technische Universitaet Muenchen are major contributors to this experiment.

The most sensitive method to experimentally verify the Majorana question is the search for a process called "neutrinoless double-beta decay". This process is a special radioactive decay that may only occur if neutrinos are their own antiparticles.

Unprecedented accuracy

The EXO-200 experiment has searched for these decays over several years. From the fact that not one of these decays has been detected, the scientists can now deduce a lower limit for the half-life of the decay of at least 1025 years – around one million-billion years more than the age of the universe.

"Although this measurement attains unprecedented accuracy, the question about the nature of neutrinos can still not be answered," says Dr. Michael Marino, member of the research group of Professor Peter Fierlinger and responsible for the analysis of the now published data. "That's why this open issue remains one of the most exciting questions in physics."

This result demonstrates the high sensitivity of the detector and also the future potential of this method. Hence the EXO-200 measurements are also the basis for a much larger future experiment that finally could confirm or refute the Majorana nature of neutrinos."

International cooperation

The EXO-200 experiment uses liquid xenon that was enriched to 80.6 percent of xenon-136 in Russian centrifuges. Xenon-136 is an isotope that is allowed by theory to undergo neutrinoless double-beta decay. The experiment's location in the Waste Isolation Pilot Plant (WIPP) 650 meters below ground provides shielding against radioactive decays and cosmic radiation.

EXO-200 is a collaboration of research groups from Canada, Switzerland, South Korea, Russia and the USA; the Technische Universitaet Muenchen is the only German partner.

###

Original publication

J. B. Albert, et.al., The EXO-200 Collaboration: Search for Majorana neutrinos with the first two years of EXO-200 data, Nature, Adv. online publication, June 5, 2014

Dr. Andreas Battenberg | Eurek Alert!
Further information:
http://www.tum.de

Further reports about: Majorana Marino Xenon accuracy explanation extensions matter particles physics tiny

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>