Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NJIT scientist creates instrument for NASA Aug. 23 launch

08.08.2012
NJIT Distinguished Research Professor and former Bell Labs scientist Louis J. Lanzerotti, will see his 50-year quest to better understand space weather and Earth's Van Allen Radiation Belts rocket, once again, into space on Aug. 23, 2012.

This is when NASA's twin Radiation Belt Storm Probes (RBSP) begin their mission to study the extremes of space weather. Lanzerotti, today one of the most respected and valued scientists behind space exploration, was the principal investigator to build one of five instruments aboard each of the two spacecraft that comprise the RBSP mission.

The mission is part of NASA's Living With a Star program which is managed by Goddard Space Flight Center. The Johns Hopkins University Applied Physics Laboratory (APL) manages the mission and has built and will operate the two RBSP spacecraft for NASA. RBSP begins its exploration with a predawn Aug. 23, 2012 launch aboard a United Launch Alliance Atlas V 401 rocket. Each RBSP spacecraft weighs about 660 kilograms (1,455 pounds) and carries an identical set of five instrument suites that will enable scientists to unlock the mysteries of the radiation belts surrounding Earth.

For Lanzerotti, a long-time New Jersey resident, the upcoming launch (and he says now his last) strikes a deeper, personal chord, harkening back to the start of his career in 1965 at the former AT&T Bell Labs, then the dream job of every young physicist. His charge was no less monumental than to analyze radiation data returned prior to the unexpected demise of the first active communications satellite, the 1962 Telstar I. The then state-of-the-art telecommunications pioneer measured 36 inches wide, weighed 170-pounds and carried innovations such as transistors and solar panels, supporting 600 voice calls and one black and white television channel.

Massive influxes of radiation—some of it natural--from the Van Allen belts and some of it man-made from nuclear testing-- doomed Telstar I after only eight months. Still, before its demise, Telstar was able to mark the dawning of the age of modern telecommunications, carry the first transatlantic television signal and prove that satellite communications was feasible. Lanzerotti recently spoke at a celebration commemorating the 50th anniversary of Telstar I hosted by Alcatel-Lucent. http://www.youtube.com/watch?v=4Xv5fOBsNQ0

"Bell Labs Engineer John Pierce who proposed the pioneering Telstar satellite did not expect Earth's space environment to be anything, but benign," recalled Lanzerotti. "James Van Allen's discovery of the radiation belts showed this not to be the case, so Telstar carried special sensors designed by Bell Labs physicist Walter Brown to measure the radiation environment that Telstar would encounter."

Fifty years later, researchers like Lanzerotti and others on the RBSP team and in heliophysics understand much more about the hazards posed by highly-charged particles in the radiation belts – though the processes that drive and shape the belts are still poorly understood. Those mysteries are the focus of the RBSP mission: Modern society's dependence on satellites and other spaced-based technologies that must operate in the belts makes the research that will come from RBSP's data valuable to building better-protected satellites in the future. "We know considerably more now about the space environment and space weather," says Lanzerotti, "and RBSP will be a major step forward in quantifying and eventually predicting conditions in space around Earth."

The two spacecraft will fly in nearly identical, eccentric orbits that cover the entire radiation belt region, lapping each other several times over the course of the two-year mission. This will give researchers an unparalleled view into the mechanics and processes that change the size and intensity of the radiation belts over time. RBSP will explore space weather – changes in Earth's space environment caused by changes in the sun's energy flow – and especially its extreme conditions, which can disable satellites, cause power grid failures and disrupt GPS services.

NJIT, New Jersey's science and technology university, enrolls more than 9,558 students pursuing bachelor's, master's and doctoral degrees in 120 programs. The university consists of six colleges: Newark College of Engineering, College of Architecture and Design, College of Science and Liberal Arts, School of Management, College of Computing Sciences and Albert Dorman Honors College. U.S. News & World Report's 2011 Annual Guide to America's Best Colleges ranked NJIT in the top tier of national research universities. NJIT is internationally recognized for being at the edge in knowledge in architecture, applied mathematics, wireless communications and networking, solar physics, advanced engineered particulate materials, nanotechnology, neural engineering and e-learning. Many courses and certificate programs, as well as graduate degrees, are available online through the Division of Continuing Professional Education.

(ATTENTION REPORTERS, EDITORS, PRODUCERS: Lanzerotti is available for interviews in Newark Aug. 13-16, 2012. Hi-res, professional photos are available. Contact Sheryl Weinstein, 973-596-3436, for details.)

Sheryl Weinstein | EurekAlert!
Further information:
http://www.njit.edu/
http://www.youtube.com/watch?v=4Xv5fOBsNQ0

More articles from Physics and Astronomy:

nachricht Mars 2020 mission to use smart methods to seek signs of past life
17.08.2017 | Goldschmidt Conference

nachricht Gold shines through properties of nano biosensors
17.08.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>