Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NJIT scientist creates instrument for NASA Aug. 23 launch

08.08.2012
NJIT Distinguished Research Professor and former Bell Labs scientist Louis J. Lanzerotti, will see his 50-year quest to better understand space weather and Earth's Van Allen Radiation Belts rocket, once again, into space on Aug. 23, 2012.

This is when NASA's twin Radiation Belt Storm Probes (RBSP) begin their mission to study the extremes of space weather. Lanzerotti, today one of the most respected and valued scientists behind space exploration, was the principal investigator to build one of five instruments aboard each of the two spacecraft that comprise the RBSP mission.

The mission is part of NASA's Living With a Star program which is managed by Goddard Space Flight Center. The Johns Hopkins University Applied Physics Laboratory (APL) manages the mission and has built and will operate the two RBSP spacecraft for NASA. RBSP begins its exploration with a predawn Aug. 23, 2012 launch aboard a United Launch Alliance Atlas V 401 rocket. Each RBSP spacecraft weighs about 660 kilograms (1,455 pounds) and carries an identical set of five instrument suites that will enable scientists to unlock the mysteries of the radiation belts surrounding Earth.

For Lanzerotti, a long-time New Jersey resident, the upcoming launch (and he says now his last) strikes a deeper, personal chord, harkening back to the start of his career in 1965 at the former AT&T Bell Labs, then the dream job of every young physicist. His charge was no less monumental than to analyze radiation data returned prior to the unexpected demise of the first active communications satellite, the 1962 Telstar I. The then state-of-the-art telecommunications pioneer measured 36 inches wide, weighed 170-pounds and carried innovations such as transistors and solar panels, supporting 600 voice calls and one black and white television channel.

Massive influxes of radiation—some of it natural--from the Van Allen belts and some of it man-made from nuclear testing-- doomed Telstar I after only eight months. Still, before its demise, Telstar was able to mark the dawning of the age of modern telecommunications, carry the first transatlantic television signal and prove that satellite communications was feasible. Lanzerotti recently spoke at a celebration commemorating the 50th anniversary of Telstar I hosted by Alcatel-Lucent. http://www.youtube.com/watch?v=4Xv5fOBsNQ0

"Bell Labs Engineer John Pierce who proposed the pioneering Telstar satellite did not expect Earth's space environment to be anything, but benign," recalled Lanzerotti. "James Van Allen's discovery of the radiation belts showed this not to be the case, so Telstar carried special sensors designed by Bell Labs physicist Walter Brown to measure the radiation environment that Telstar would encounter."

Fifty years later, researchers like Lanzerotti and others on the RBSP team and in heliophysics understand much more about the hazards posed by highly-charged particles in the radiation belts – though the processes that drive and shape the belts are still poorly understood. Those mysteries are the focus of the RBSP mission: Modern society's dependence on satellites and other spaced-based technologies that must operate in the belts makes the research that will come from RBSP's data valuable to building better-protected satellites in the future. "We know considerably more now about the space environment and space weather," says Lanzerotti, "and RBSP will be a major step forward in quantifying and eventually predicting conditions in space around Earth."

The two spacecraft will fly in nearly identical, eccentric orbits that cover the entire radiation belt region, lapping each other several times over the course of the two-year mission. This will give researchers an unparalleled view into the mechanics and processes that change the size and intensity of the radiation belts over time. RBSP will explore space weather – changes in Earth's space environment caused by changes in the sun's energy flow – and especially its extreme conditions, which can disable satellites, cause power grid failures and disrupt GPS services.

NJIT, New Jersey's science and technology university, enrolls more than 9,558 students pursuing bachelor's, master's and doctoral degrees in 120 programs. The university consists of six colleges: Newark College of Engineering, College of Architecture and Design, College of Science and Liberal Arts, School of Management, College of Computing Sciences and Albert Dorman Honors College. U.S. News & World Report's 2011 Annual Guide to America's Best Colleges ranked NJIT in the top tier of national research universities. NJIT is internationally recognized for being at the edge in knowledge in architecture, applied mathematics, wireless communications and networking, solar physics, advanced engineered particulate materials, nanotechnology, neural engineering and e-learning. Many courses and certificate programs, as well as graduate degrees, are available online through the Division of Continuing Professional Education.

(ATTENTION REPORTERS, EDITORS, PRODUCERS: Lanzerotti is available for interviews in Newark Aug. 13-16, 2012. Hi-res, professional photos are available. Contact Sheryl Weinstein, 973-596-3436, for details.)

Sheryl Weinstein | EurekAlert!
Further information:
http://www.njit.edu/
http://www.youtube.com/watch?v=4Xv5fOBsNQ0

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>