Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NJIT's new solar telescope peers deep into the sun to track the origins of space weather

29.04.2015

Big Bear Observatory captures groundbreaking images of flaring solar flux ropes

Scientists at NJIT's Big Bear Solar Observatory (BBSO) have captured the first high-resolution images of the flaring magnetic structures known as solar flux ropes at their point of origin in the Sun's chromosphere. Their research, published today in Nature Communications, provides new insights into the massive eruptions on the Sun's surface responsible for space weather.


Fine details of a magnetic flux rope captured by the New Solar Telescope at Big Bear Solar Observatory for Solar Active Region 11817 on 2013 August 11. The structure is further demonstrated by the 3-D magnetic modeling based the observations of Helioseismic and Magnetic Imager on board Solar Dynamic Observatory.

Credit: Chang Liu

Flux ropes are bundles of magnetic fields that together rotate and twist around a common axis, driven by motions in the photosphere, a high-density layer of the Sun's atmosphere below the solar corona and chromosphere. The NJIT images were taken from observations of the newly commissioned 1.6m New Solar Telescope (NST) at BBSO.

"These twisting magnetic loops have been much studied in the Sun's corona, or outer layer, but these are the first high-resolution images of their origination in the chromosphere below it. For the first time, we can see their twisting motion in great detail and watch how it evolves," said Haimin Wang, distinguished professor of physics at NJIT and the study's lead author.

Wang and his co-authors strung together a series of images which trace the formation of an S-shaped bundle of magnetic fields from which a set of loops peel off and grow upward into a multi-strand flux rope within a few minutes. Two flare ribbons appear at the two sides of the rising flux rope.

"We have been looking for erupting twisted solar flux ropes in the chromosphere, but observations of these eruptions under excellent conditions are very rare," Wang said, adding that the NST images they captured provide unprecedented detail, as well as powerful new clues about their initiation and their relationship to solar eruptions and coronal mass ejections.

Energy releases in solar flares and associated forms of eruptions occur when magnetic field lines, with their powerful underlying electric currents, are twisted beyond a critical point that can be measured by the number of turns in the twist. The largest of these eruptions cause what is known as space weather - the radiation, energetic particles and magnetic field releases from the Sun powerful enough to cause severe effects in Earth's near environment, such as the disruption of communications, power lines and navigations systems.

"One of the exciting things about these new images is that we can now distinguish between mild twists and those severe enough to cause space weather," said Wang, who likened the eruptions to earthquakes, which are energy releases following the build-up of tension as tectonic plates rub against each other along fault lines. The team is developing tools to predict space weather from solar observations and modeling.

###

About NJIT

One of the nation's leading public technological universities, New Jersey Institute of Technology (NJIT) is a top-tier research university that prepares students to become leaders in the technology-dependent economy of the 21st century. NJIT's multidisciplinary curriculum and computing-intensive approach to education provide technological proficiency, business acumen and leadership skills. With an enrollment of more than 10,000 graduate and undergraduate students, NJIT offers small-campus intimacy with the resources of a major public research university. NJIT is a global leader in such fields as solar research, nanotechnology, resilient design, tissue engineering and cyber-security, in addition to others. NJIT ranks fifth among U.S. polytechnic universities in research expenditures, topping $110 million, and is among the top 1 percent of public colleges and universities in return on educational investment, according to Payscale.com.

Media Contact

Tanya Klein
973-596-3433

 @njit

http://www.njit.edu 

Tanya Klein | EurekAlert!

More articles from Physics and Astronomy:

nachricht Writing and deleting magnets with lasers
19.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Ultrafast electron oscillation and dephasing monitored by attosecond light source
19.04.2018 | Yokohama National University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Scientists re-create brain neurons to study obesity and personalize treatment

20.04.2018 | Health and Medicine

Spider silk key to new bone-fixing composite

20.04.2018 | Materials Sciences

Clear as mud: Desiccation cracks help reveal the shape of water on Mars

20.04.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>