Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NJIT's new solar telescope peers deep into the sun to track the origins of space weather

29.04.2015

Big Bear Observatory captures groundbreaking images of flaring solar flux ropes

Scientists at NJIT's Big Bear Solar Observatory (BBSO) have captured the first high-resolution images of the flaring magnetic structures known as solar flux ropes at their point of origin in the Sun's chromosphere. Their research, published today in Nature Communications, provides new insights into the massive eruptions on the Sun's surface responsible for space weather.


Fine details of a magnetic flux rope captured by the New Solar Telescope at Big Bear Solar Observatory for Solar Active Region 11817 on 2013 August 11. The structure is further demonstrated by the 3-D magnetic modeling based the observations of Helioseismic and Magnetic Imager on board Solar Dynamic Observatory.

Credit: Chang Liu

Flux ropes are bundles of magnetic fields that together rotate and twist around a common axis, driven by motions in the photosphere, a high-density layer of the Sun's atmosphere below the solar corona and chromosphere. The NJIT images were taken from observations of the newly commissioned 1.6m New Solar Telescope (NST) at BBSO.

"These twisting magnetic loops have been much studied in the Sun's corona, or outer layer, but these are the first high-resolution images of their origination in the chromosphere below it. For the first time, we can see their twisting motion in great detail and watch how it evolves," said Haimin Wang, distinguished professor of physics at NJIT and the study's lead author.

Wang and his co-authors strung together a series of images which trace the formation of an S-shaped bundle of magnetic fields from which a set of loops peel off and grow upward into a multi-strand flux rope within a few minutes. Two flare ribbons appear at the two sides of the rising flux rope.

"We have been looking for erupting twisted solar flux ropes in the chromosphere, but observations of these eruptions under excellent conditions are very rare," Wang said, adding that the NST images they captured provide unprecedented detail, as well as powerful new clues about their initiation and their relationship to solar eruptions and coronal mass ejections.

Energy releases in solar flares and associated forms of eruptions occur when magnetic field lines, with their powerful underlying electric currents, are twisted beyond a critical point that can be measured by the number of turns in the twist. The largest of these eruptions cause what is known as space weather - the radiation, energetic particles and magnetic field releases from the Sun powerful enough to cause severe effects in Earth's near environment, such as the disruption of communications, power lines and navigations systems.

"One of the exciting things about these new images is that we can now distinguish between mild twists and those severe enough to cause space weather," said Wang, who likened the eruptions to earthquakes, which are energy releases following the build-up of tension as tectonic plates rub against each other along fault lines. The team is developing tools to predict space weather from solar observations and modeling.

###

About NJIT

One of the nation's leading public technological universities, New Jersey Institute of Technology (NJIT) is a top-tier research university that prepares students to become leaders in the technology-dependent economy of the 21st century. NJIT's multidisciplinary curriculum and computing-intensive approach to education provide technological proficiency, business acumen and leadership skills. With an enrollment of more than 10,000 graduate and undergraduate students, NJIT offers small-campus intimacy with the resources of a major public research university. NJIT is a global leader in such fields as solar research, nanotechnology, resilient design, tissue engineering and cyber-security, in addition to others. NJIT ranks fifth among U.S. polytechnic universities in research expenditures, topping $110 million, and is among the top 1 percent of public colleges and universities in return on educational investment, according to Payscale.com.

Media Contact

Tanya Klein
973-596-3433

 @njit

http://www.njit.edu 

Tanya Klein | EurekAlert!

More articles from Physics and Astronomy:

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>