Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST Telescope Calibration May Help Explain Mystery of Universe's Expansion

07.01.2011
Is the expansion of the universe accelerating for some unknown reason? This is one of the mysteries plaguing astrophysics, and somewhere in distant galaxies are yet-unseen supernovae that may hold the key. Now, thanks to a telescope calibrated by scientists from the National Institute of Standards and Technology (NIST), Harvard University and the University of Hawaii, astrophysicists can be more certain of one day obtaining an accurate answer.

The NIST scientists traveled to the summit of Haleakala volcano in Hawaii to fine-tune the operation of billions of light-collecting pixels in the Pan-STARRS telescope, which scans the heavens for Type IA supernovae.

These dying stars always shine with the same luminosity as other Type IA supernovae, making them useful to observers as “standard candles” for judging distance in the universe. Any apparent shift in the supernova’s spectrum gives a measure of how the universe has expanded (or contracted) as the light traveled from the supernova to Earth.

Because Type IA’s are valuable as signposts, astrophysicists want to be sure that when they observe one of these faraway stellar cataclysms, they are getting a clear and accurate picture—particularly important given the current mystery over why the rate of expansion of the universe appears to be increasing. For that, they need a telescope that will return consistent information about supernovae regardless of which of the roughly 1,400,000,000 pixels of its collector spots it.

“That’s where we came in,” says NIST's John Woodward. “We specialize in measurement, and they needed to calibrate the telescope in a way that has never been done before.”

Ordinary calibrations involve a telescope’s performance at many light wavelengths simultaneously, but Pan-STARRS needed to be calibrated at many individual wavelengths between 400 and 1,000 nanometers. For the job, Woodward and his colleagues used a special laser whose wavelength can be tuned to any value in that range, and spent three days testing the telescope’s huge 1.4 gigapixel camera–the largest in the world, Woodward says.

“Pan-STARRS will scan the same areas of the sky repeatedly over many months,” Woodward says. “It was designed to look for near-Earth objects like asteroids, and it also pulls double duty as a supernova hunter. But for both jobs, observers need to be sure they can usefully compare what they see from one image to the next.”

Woodward says that because this is one of the first-ever such calibrations of a telescope, it is unclear just how much effect the team’s work will have, and part of their future work will be determining how much they have reduced the uncertainties in Pan-STARRS’s performance. They will use this information to calibrate a much larger telescope–the Large Synoptic Survey Telescope, planned for construction in Chile.

* C.W. Stubbs, P. Doherty, C. Cramer, G. Narayan, Y.J. Brown, K.R. Lykke, J.T. Woodward and J.L. Tonry. Precise throughput determination of the Pan-STARRS telescope and the gigapixel imager using a calibrated silicon photodiode and a tunable laser: Initial results. Astrophysical Journal Supplement, Dec. 2010, Pages 376-388.

Chad Boutin | Newswise Science News
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>