Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST’s New Scanning Probe Microscope is Supercool

14.12.2010
The discoveries of superconductivity, the quantum Hall effect and the fractional quantum Hall effect were all the result of measurements made at increasingly lower temperatures.

Now, pushing the regime of the very cold into the very small, a research team from the National Institute of Standards and Technology (NIST), the University of Maryland, Janis Research Company, Inc., and Seoul National University, has designed and built the most advanced ultra-low temperature scanning probe microscope (ULTSPM) in the world.

Detailed in a recent paper,* the ULTSPM operates at lower temperatures and higher magnetic fields than any other similar microscope, capabilities that enable the device to resolve energy levels separated by as small as 1 millionth of an electron volt. This extraordinary resolution has already resulted in the discovery of new physics (see "Puzzling New Physics from Graphene Quartet's Quantum Harmonies").

"To get these kinds of measurements, you need to combine coarse and extremely fine movement (the mechanical positioning of a probe tip about two atoms' distance from the sample surface), ultra-high vacuum, cryogenics and vibration isolation," says NIST Fellow Joseph Stroscio, one of the device's co-creators. "We designed this instrument to achieve superlative levels of performance, which, in turn, requires achieving nearly the ultimate in environmental control."

The NIST team had to overcome many technical challenges to achieve this level of precision and sensitivity, according to Young Jae Song, a postdoctoral researcher who helped develop the instrument at NIST.

Past designs used mechanical systems to move the probe tip that did not work over a wide range of temperatures. Researchers overcame this by creating piezoelectric actuators that expand with atomic scale precision when voltage is applied.

For vibration control, the group built the ULTSPM facility on top of a separate 110-ton concrete block buffered by six computer-controlled air springs. The ULTSPM, itself, sits on a 6-ton granite table, isolated from the concrete block by another set of computer-controlled air springs.

To achieve the ULTSPM's ultra low operating temperature of 10 millikelvins, the team designed a low noise dilution refrigerator to supplement the device's chilly 3-meter deep, 250-liter liquid helium bath. Because electromagnetic radiation entering through wires and cables can heat up the microscope, the ULTSPM lab is nested inside a separate, electromagnetically shielded room.

In order to ready new samples and probes without disturbing ongoing measurements, experimenters built a vacuum-sealed "railroad" system that they can disconnect from the chamber.

"The ability to create these kinds of experimental conditions opens up a whole new frontier in nanoscale physics," says Robert Celotta, founding director of the NIST Center for Nanoscale Science and Technology. "This instrument has been five years in the making, and we can't help but be excited about all the discoveries waiting to be made."

* Y. Song, A. Otte, V. Shvarts, Z. Zhao, Y. Kuk, S. Blankenship, A. Band, F. Hess and J. Stroscio. A 10 mK scanning probe microscopy facility. Review of Scientific Instruments. In press.

Mark Esser | Newswise Science News
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Unconventional superconductor may be used to create quantum computers of the future
19.02.2018 | Chalmers University of Technology

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>