Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST researchers put a new spin on atomic musical chairs

03.12.2009
Researchers from the National Institute of Standards and Technology (NIST) and the Naval Research Laboratory have developed a new way to introduce magnetic impurities in a semiconductor crystal by prodding it with a scanning tunneling microscope (STM). Detailed in a recent paper,* this technique will enable researchers to selectively implant atoms in a crystal one at a time to learn about its electrical and magnetic properties on the atomic scale.

A better understanding of these properties is fundamental to the development of "spintronics," electronic devices that will use electron spin, a characteristic of magnetism, instead of charge for storing information. Spintronics could increase the performance of electronic devices while reducing power usage and production costs.

Electronics manufacturers commonly introduce impurities into semiconducting crystals to change how well the material will conduct electricity. Researchers also can introduce impurities that induce a semiconductor to become magnetic. In these dilute magnetic semiconductors (DMS), the added impurity atoms typically must displace one of the original atoms in the crystal structure to become "active." One of the goals of DMS materials research is to achieve higher operating temperatures by making sure all the doped magnetic impurity atoms are activated. Knowing how the impurity atoms get into the host crystal lattice sites is essential to this process.

The experiments involved depositing single manganese atoms onto an indium arsenide surface. To become active and magnetize the DMS, the manganese atom must take a chair from one of the indium atoms by occupying an indium lattice site. Using the STM probe tip, the NIST researchers zapped an indium atom with sufficient voltage to dislodge it from its place in the lattice and switch places with the manganese atom. In this way the researchers can choose where and which manganese atom they want to make active.

Because the exchange happens very quickly, researchers cannot see what path the atoms take when made to play musical chairs. To find the pathway, researchers at the Naval Research Laboratory made theoretical models of the atomic motions and identified two possible avenues for the exchange to occur. The group selected the correct pathway by comparing the calculation results with the experimental STM findings.

This work was supported in part by the Korea Research Foundation grant program (MOEHRD)**, the Office of Naval Research and the NIST-CNST/UMD-NanoCenter Cooperative Agreement. Computations were performed at the Department of Defense Major Shared Resource Center at the Air Force Research Laboratory at the Wright-Patterson Air Force Base in Ohio.

* Y.J. Song, S.C. Erwin, G.M. Rutter, P.N. First, N.B. Zhitenev and J.A. Stroscio. Making Mn substitutional impurities in InAs using a scanning tunneling microscope. Nano Letters. Published online Sept. 29, 2009. http://pubs.acs.org/doi/full/10.1021/nl902575g

** KRF-2006-214-C00022

Mark Esser | EurekAlert!
Further information:
http://www.nist.gov

Further reports about: Ambient Air DMS Laboratory NIST STM electronic devices manganese atom

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>