Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST physicists chip away at mystery of antimatter imbalance

10.11.2011
Why there is stuff in the universe—more properly, why there is an imbalance between matter and antimatter—is one of the long-standing mysteries of cosmology.

A team of researchers working at the National Institute of Standards and Technology (NIST) has just concluded a 10-year-long study of the fate of neutrons in an attempt to resolve the question, the most sensitive such measurement ever made. The universe, they concede, has managed to keep its secret for the time being, but they've succeeded in significantly narrowing the number of possible answers.

Though the word itself evokes science fiction, antimatter is an ordinary—if highly uncommon—material that cosmologists believe once made up almost exactly half of the substance of the universe. When particles and their antiparticles come into contact, they instantly annihilate one another in a flash of light. Billions of years ago, most of the matter and all of the antimatter vanished in this fashion, leaving behind a tiny bit of matter awash in cosmic energy. What we see around us today, from stars to rocks to living things, is made up of that excess matter, which survived because a bit more of it existed.

"The question is, why was there an excess of one over the other in the first place?" says Pieter Mumm, a physicist at NIST's Physical Measurements Lab. "There are lots of theories attempting to explain the imbalance, but there's no experimental evidence to show that any of them can account for it. It's a huge mystery on the level of asking why the universe is here. Accepted physics can't explain it."

An answer might be found by examining radioactivity in neutrons, which decay in two different ways that can be distinguished by a specially configured detector. Though all observations thus far have invariably shown these two ways occur with equal frequency in nature, finding a slight imbalance between the two would imply that nature favors conditions that would create a bit more matter than antimatter, resulting in the universe we recognize.

Mumm and his collaborators from several institutions used a detector at the NIST Center for Neutron Research to explore this aspect of neutron decay with greater sensitivity than was ever possible before. For the moment, the larger answer has eluded them—several years of observation and data analysis once again turned up no imbalance between the two decay paths. But the improved sensitivity of their approach means that they can severely limit some of the numerous theories about the universe's matter-antimatter imbalance, and with future improvements to the detector, their approach may help constrain the possibilities far more dramatically.

"We have placed very tight constraints on what these theories can say," Mumm says. "We have given theory something to work with. And if we can modify our detector successfully, we can envision limiting large classes of theories. It will help ensure the physics community avoids traveling down blind alleys."

The research team also includes scientists from the University of Washington, the University of Michigan, the University of California at Berkeley, the University of Notre Dame, Hamilton College and the University of North Carolina at Chapel Hill. Funding was provided by the U.S. Department of Energy and the National Science Foundation.

* H.P. Mumm, T.E. Chupp, R.L. Cooper, K.P. Coulter, S.J. Freedman, B.K. Fujikawa, A. García, G.L. Jones, J.S. Nico, A.K. Thompson, C.A. Trull, J.F. Wilkerson and F.E. Wietfeldt. New limit on time-reversal violation in beta decay. Physical Review Letters, Vol. 107, Issue 10, DOI: 10.1103/PhysRevLett.107.102301.

Chad Boutin | EurekAlert!
Further information:
http://ww.nist.gov

More articles from Physics and Astronomy:

nachricht Squeezing light at the nanoscale
18.06.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht The Fraunhofer IAF is a »Landmark in the Land of Ideas«
15.06.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Scientists predict a new superhard material with unique properties

18.06.2018 | Materials Sciences

Squeezing light at the nanoscale

18.06.2018 | Physics and Astronomy

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>