Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NIST, NASA Launch Joint Effort to Improve Climate Data

The National Institute of Standards and Technology (NIST) and the National Aeronautics and Space Administration (NASA) have launched a joint effort to gather enhanced climate data from spaceborne climate observation instruments planned for a group of satellites now under development.

The Climate Absolute Radiance and Refractivity Observatory (CLARREO) Mission includes a fleet of satellites tentatively scheduled for launch later this decade that will gather data for long-term climate projections. The CLARREO mission will provide an accurate climate record of the complete spectrum of energy that Earth reflects and radiates back into space, measurements that should provide a clearer understanding of the climate system.

NIST’s role will focus on the calibration of the instruments aboard CLARREO satellites, as well as on the accuracy that the sensors must meet. The measurements need to be characterized to far greater accuracy—from two to 10 times better, depending on the wavelength of light in question—and detector standards need to be developed for the far infrared region of the spectrum. NIST will also help NASA improve its own capabilities in instrument calibration. The collaboration was finalized in a Space Act Agreement on Feb. 4, 2010.

CLARREO, led by NASA Langley Research Center in Hampton, Va., is now among NASA’s top-priority missions because of its high ranking by the National Research Council, which designated CLARREO one of its four “Tier One” missions when it evaluated proposals in 2007. NASA is allocating $270,000 for NIST’s contributions to the project this year.

The mission is part of a longer-term effort to establish global long-term climate records that are of high accuracy and traceable to the international system of units (SI). The CLARREO satellites and other instruments will be calibrated against international standards based on SI, so that observations from different times and locations can be compared usefully, creating a more reliable record of long-term climate trends.

Chad Boutin,, (301) 975-4261

Chad Boutin | Newswise Science News
Further information:

More articles from Physics and Astronomy:

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>