Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST laser comb system maps 3-D surfaces remotely for manufacturing, forensics

08.10.2014

Researchers at the National Institute of Standards and Technology (NIST) have demonstrated a laser-based imaging system that creates high-definition 3D maps of surfaces from as far away as 10.5 meters.* The method may be useful in diverse fields, including precision machining and assembly, as well as in forensics.

NIST's 3D mapping system combines a form of laser detection and ranging (LADAR), which is sensitive enough to detect weak reflected light, with the ranging accuracy made possible by frequency combs, as previously demonstrated at NIST.** The frequency comb, a tool for precisely measuring different frequencies of light, is used to continuously calibrate the laser in the imaging system.


This video shows the sole of a shoe as it appears from different perspectives in rendering software. The shoe was placed upside down on an optical table (seen as flat surface with regularly spaced holes). The colors indicate distance, with blue/purple indicating shorter distances (or higher areas of the shoe sole) and red/brown longer distances. In the second part of the movie detailing the shoe sole pattern, the color scale spans a range of about 10 millimeters (mm). The prominent shoe sole patterns are about 1-2 mm deep.

Credit: Baumann/NIST

Operating with laser power of just 9 milliwatts—which is safe for the eyes at the instrument's infrared wavelength—NIST's 3D mapping system scans a target object point by point across a grid, measuring the distance to each point.

The system uses the distance data to make a 3D image of about 1 million pixels in less than 8.5 minutes at the current scanning rate. Distances to points on a rough surface that reflects light in many directions can be determined to within 10 micrometers in half a millisecond, with an accuracy that is traceable to a frequency standard.

The system has wide dynamic range, enabling precise 3D mapping of targets with varied surface types and reflective properties. NIST researchers demonstrated the range by scanning footprints in soil, vegetation such as cactus (imaging individual spines), and complex mechanical devices such as a piston for a motorcycle.

The new NIST method offers a unique set of capabilities compared to conventional 3D mapping techniques. The NIST system is similar to optical coherence tomography, for example, but can operate much farther away from the target and is inherently accurate because of the frequency comb. The NIST system does not need a reference artifact to be placed next to the target, something typically required for interferometry-based systems.

LADAR typically measures distance based on the round-trip flight time of laser light, which reflects off the target and is detected by a sensor. In the NIST LADAR system, the laser sweeps continuously across a band of frequencies. The initial laser output is combined with the reflected light and the resulting "beat" signals are converted to voltage and analyzed by digital signal processing to generate time delay data, which is used to calculate the distance. (The difference in frequency between the transmitted and received signals increases with distance.)

This basic technique is well established .*** However, by including a frequency comb to continuously calibrate the swept laser, the NIST system can operate much more rapidly, yielding one measurement point every half a millisecond and simultaneously maintain sub-micrometer accuracy traceable to a frequency standard. Finally, the system uses real-time, fast processing digital electronics to produce fully calibrated, 3D megapixel images.

As an example application, NIST's 3D mapping system could be used to make virtual casts of forensic evidence such as footprints in dirt. Conventional plaster casts that record impression evidence normally require a lot of effort to make and are difficult to compare to each other or to shoes. Furthermore, conventional analysis can destroy the evidence. By contrast, a remotely created 3D image of a footprint can nondestructively reveal more details than a photograph, such as exact measurements of shoe tread. The tread may show individual wear marks from a bicycle pedal, for example, a type of detail that could link a specific shoe to a crime scene.

Several manufacturers already have expressed interest in the NIST system, which is currently about the size of a desktop but suitable for future potential conversion to a portable, chip-scale instrument. The research was funded by NIST and the Defense Advanced Research Projects Agency.

###

* E. Baumann, F.R. Giorgetta, J.D. Deschenes, W.C. Swann, I. Coddington and N.R. Newbury. Comb-calibrated laser ranging for three-dimensional surface profiling with micrometer-level precision at a distance. Optics Express. Vol. 22 Issue 21, Oct. 20, 2014. DOI:10.1364/OE.22.024914

** See 2009 NIST Tech Beat article, "NIST's LIDAR May Offer Peerless Precision in Remote Measurements," at http://www.nist.gov/pml/div686/lidar_060209.cfm. NIST researchers also reported in 2013 that the LADAR system without the 3D imaging capability is accurate to within 1 micrometer (E. Baumann, F.R. Giorgetta, I. Coddington, L.C. Sinclair, K. Knabe, W.C. Swann and N.R. Newbury, Comb-calibrated frequency ­modulated continuous-wave LADAR for absolute distance measurements, Opt. Lett., vol. 38,no. 12, pp. 2026-2028).

*** This technique is called frequency modulated continuous wave (FMCW) laser detection and ranging (LADAR).

Laura Ost | Eurek Alert!

More articles from Physics and Astronomy:

nachricht NASA's Fermi catches gamma-ray flashes from tropical storms
25.04.2017 | NASA/Goddard Space Flight Center

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>