Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST demonstrates transfer of ultraprecise time signals over a wireless optical channel

02.05.2013
By bouncing eye-safe laser pulses off a mirror on a hillside, researchers at the National Institute of Standards and Technology (NIST) have transferred ultraprecise time signals through open air with unprecedented precision equivalent to the "ticking" of the world's best next-generation atomic clocks.

Described in Nature Photonics,* the demonstration shows how next-generation atomic clocks at different locations could be linked wirelessly to improve geodesy (altitude mapping), distribution of time and frequency information, satellite navigation, radar arrays and other applications.

Clock signals of this type have previously been transferred by fiber-optic cable, but a wireless channel offers greater flexibility and the eventual possibility of transfer to and from satellites.

The stability of the transferred infrared signal matched that of NIST's best experimental atomic clock, which operates at optical frequencies.** Infrared light is very close to the frequencies used by these clocks, and both are much higher than the microwave frequencies in conventional atomic clocks currently used as national time standards. Operating frequency is one of the most important factors in the precision of optical atomic clocks, which have the potential to provide a 100-fold improvement in the accuracy of future time standards. But the signals need to be distributed with minimal loss of precision and accuracy.

The signal transfer demonstration was performed outdoors over a two-way wireless link using two laser frequency combs. A frequency comb generates a steady stream of ultrashort optical pulses with a spacing that can be synchronized perfectly with the "ticks" of an optical atomic clock.*** In the experiment, the two combs were synchronized to the same stable optical cavity, which serves as a stand-in for an optical atomic clock. Each comb pulse was sent from one of two locations on NIST's campus in Boulder, Colo., reflected off a mirror on a mesa behind the campus, and returned to the other site, traveling a total distance of two kilometers.

Researchers measured travel times for pulses traveling in opposite directions between the two sites. The cumulative timing differences and frequency instabilities were infinitesimal, just one million-billionths of a second per hour, a performance level sufficient for transferring optical clock signals.

The transfer technique overcomes typical wireless signal problems such as turbulence in the atmosphere—the phenomenon that makes images shimmer when it's very hot outside. Because turbulence affects both directions equally, it can be cancelled out. The transfer technique can also withstand signal losses due to temporary obstruction of the light path. The method should be able to operate at much longer distances, possibly even over future ground-to-satellite optical communication links as an added timing channel, researchers say.

The combs potentially could be made portable, and the low-power infrared light is safe for eyes. The research is funded in part by the Defense Advanced Research Projects Agency.

* F.R. Giorgetta, W.C. Swann, L.C. Sinclair, E. Baumann, I. Coddington, N.R. Newbury. Optical two-way time and frequency transfer over free-space. Nature Photonics. Published online April 28.

** See 2010 NIST press release, "NIST Pair of Aluminum Atomic Clocks Reveal Einstein's Relativity at a Personal Scale," at http://www.nist.gov/public_affairs/releases/aluminum-atomic-clock_092310.cfm.

*** For more on how frequency combs work, see http://www.nist.gov/public_affairs/releases/frequency_combs.cfm.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA's fermi finds possible dark matter ties in andromeda galaxy

22.02.2017 | Physics and Astronomy

Wintering ducks connect isolated wetlands by dispersing plant seeds

22.02.2017 | Life Sciences

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>