Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST Clock Experiment Demonstrates That Your Head is Older Than Your Feet

01.10.2010
Scientists have long known that time passes faster at higher elevations—a curious aspect of Einstein’s theories of relativity that previously has been measured by comparing clocks on the Earth’s surface and a high-flying rocket.

Now, physicists at the National Institute of Standards and Technology (NIST) have measured this effect at a more down-to-earth scale of 33 centimeters, or about 1 foot, demonstrating, for instance, that you age faster when you stand a couple of steps higher on a staircase.

Described in the Sept. 24 issue of Science,* the difference is much too small for humans to perceive directly—adding up to approximately 90 billionths of a second over a 79-year lifetime—but may provide practical applications in geophysics and other fields.

The NIST researchers also observed another aspect of relativity—that time passes more slowly when you move faster—at speeds comparable to a car travelling about 20 miles per hour, a more comprehensible scale than previous measurements made using jet aircraft.

NIST scientists performed the new “time dilation” experiments by comparing operations of a pair of the world’s best experimental atomic clocks. The nearly identical clocks are each based on the “ticking” of a single aluminum ion as it vibrates between two energy levels over a million billion times per second. One clock keeps time to within 1 second in about 3.7 billion years (see NIST announcement from Feb. 4, 2010, “NIST’s Second ‘Quantum Logic Clock’ Based on Aluminum Ion is Now World’s Most Precise Clock” at http://www.nist.gov/physlab/div847/logicclock_020410.cfm) and the other is close behind in performance. The clocks are precise and stable enough to reveal slight differences that could not be seen until now.

The NIST experiments test two predictions of Einstein’s theories of relativity. First, when two clocks are subjected to unequal gravitational forces due to their different elevations above the surface of the Earth, the higher clock—experiencing a smaller gravitational force—runs faster. Second, when an observer is moving, a stationary clock’s tick appears to last longer, so the clock appears to run slow. Scientists refer to this as the “twin paradox,” in which a twin sibling who travels on a fast-moving rocket ship would return home younger than the other twin.

In one set of experiments, scientists raised one of the clocks by jacking up the laser table to a height one-third of a meter (about a foot) above the second clock. Sure enough, the higher clock ran at a slightly faster rate than the lower clock, exactly as predicted.

The second set of experiments examined the effects of altering the physical motion of the ion in one clock. The ions are almost completely motionless during normal clock operations. NIST scientists tweaked the one ion so that it gyrated back and forth at speeds equivalent to several meters per second. That clock ticked at a slightly slower rate than the second clock, as predicted by relativity.

Such comparisons of super-precise clocks eventually may be useful in geodesy, the science of measuring the Earth and its gravitational field, with applications in geophysics and hydrology, and possibly in space-based tests of fundamental physics theories, suggests physicist Till Rosenband, leader of NIST’s aluminum ion clock team.

The research was supported in part by the Office of Naval Research. For more details, see the NIST Sept. 23, 2010, announcement, “NIST Pair of Aluminum Atomic Clocks Reveal Einstein’s Relativity at a Personal Scale” at http://www.nist.gov/public_affairs/releases/aluminum-atomic-clock_092310.cfm.

* C.W. Chou, D.B. Hume, T. Rosenband and D.J. Wineland. Optical clocks and relativity. Science. Sept. 24, 2010

Laura Ost | Newswise Science News
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>