Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Always nicely in pairs and indistinguishable: Photons at the push of a button

20.02.2014
Encryption technologies with the help of quanta (quantum cryptography) or optical quantum computing require special light conditions, so-called indistinguishable and interlocked photon pairs, in well-defined temporal pulses.

Existing procedures to generate these, however, lead to results occurring more by chance in view of the number of photon pairs in one pulse. The consequences are errors in the quantum algorithms that greatly restrict their usefulness for deterministic quantum technologies that depend on the predictive accuracy.


Optical stimulation of a semi-conductor quantum point with a short laser pulse (green), that emits single interlocked quantum pairs (red resp. blue). Image: University of Stuttgart

In an experiment based on a semi-conductor quantum point, physicists from the University of Stuttgart have now shown how it is possible to generate single indistinguishable photon pairs based on parametric down conversion at the push of a button, so to speak. The work was published in the renowned specialist journal Nature Photonics*.

Semi-conductor quantum points are ideally suited to generate interlocked photon pairs due to their properties. In this way the quantum point can be stimulated through a short optical or electrical pulse, and subsequently a so-called photon pair based on parametric down conversion can be released if the conditions are suitable and be used for applications.

In the case of such photon pairs, the polarisation of each single photon is initially completely undefined. Only the targeted measurement on one of the two photons also enables a direct statement on the polarisation of the second photon, but this occurs immediately. In so doing it is irrelevant to what extent the single photons are separated from each other spatially. This property is exploited in a targeted way in the quantum technologies, for example for bug-proof communication.

In work up to now to generate interlocked photon pairs, the quantum points were optically stimulated electrically or in a non-resonant way. This method of stimulating, however, entails some disadvantages. In this respect, exactly two electron pair of holes are not stimulated for each stimulation pulse and subsequently two photons (an interlocked photon pair) emitted. It is rather the case that only one single proton or more than two photons are released. The fact that these stimulation conditions also generate many charge carriers in the environment of the quantum point is even more problematic. The interaction between these charge carriers and the charge carriers in the quantum point leads to so-called decoherence processes, that ultimately limit the indistinguishability of the photons.

Physicists at the Institute of Semiconductor Optics and Functional Interfaces under the management of Prof. Dr. Peter Michler have now succeeded of stimulating the quantum point with exactly two electron pair of holes with a so-called resonant two-photon stimulation process. Consequently, only one interlocked photon pair is emitted through this. Moreover, it was able to be shown that the photons generated in this resonant way are undistinguishable to a great extent, making them well suited for the aforementioned applications.

The more exact photon pair generation rate of 86 percent achieved in this way was able to be determined in cooperation with the theoretic physicist Dr. Martin Glässl from the University of Bayreuth. This joint work is now the starting point for a range of further experiments in which the photon source is to be used for experiments on the quantum teleportation of photons, for example.

* Original publication: M. Müller, S. Bounouar, K. D. Jöns, M. Glässl, and P. Michler, Nature Photonics, DOI 10.1038/nphoton.2013.377

Further information:
Prof. Dr. Peter Michler, Institute of Semi Semiconductor Optics and Functional Interfaces, Tel. 0711/685-64660,

Email: p.michler (at) ihfg.uni-stuttgart.de

Andrea Mayer-Grenu | idw
Further information:
http://www.ihfg.uni-stuttgart.de

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>