Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly Found Dwarf Galaxies Could Help Reveal the Nature of Dark Matter

10.11.2011
In work that could help advance astronomers' understanding of dark matter, University of Michigan researchers have discovered two additional dwarf galaxies that appear to be satellites of Andromeda, the closest spiral galaxy to Earth.

Eric Bell, an associate professor in astronomy, and Colin Slater, an astronomy Ph.D. student, found Andromeda XXVIII and XXIX---that's 28 and 29. They did it by using a tested star-counting technique on the newest data from the Sloan Digital Sky Survey, which has mapped more than a third of the night sky. They also used follow-up data from the Gemini North Telescope in Hawaii.

At 1.1 million and 600,000 light years from Andromeda, these are two of the furthest satellite galaxies ever detected. Invisible to the naked eye, the galaxies are 100,000 times fainter than Andromeda, and can barely be seen even with large telescopes.

The findings are published in the current Nov. 20 edition of Astrophysical Journal.

These astronomers set out looking for dwarf galaxies around Andromeda to help them understand how matter relates to dark matter, an invisible substance that doesn't emit or reflect light, but is believed to make up most of the universe's mass. Astronomers believe it exists because they can detect its gravitational effects on visible matter. With its gravity, dark matter is believed to be responsible for organizing visible matter into galaxies.

"These faint, dwarf, relatively nearby galaxies are a real battleground in trying to understand how dark matter acts at small scales," Bell said. "The stakes are high."

The prevailing hypothesis is that visible galaxies are all nestled in beds of dark matter, and each bed of dark matter has a galaxy in it. For a given volume of universe, the predictions match observations of large galaxies.

"But it seems to break down when we get to smaller galaxies," Slater said. "The models predict far more dark matter halos than we observe galaxies. We don't know if it's because we're not seeing all of the galaxies or because our predictions are wrong."

"The exciting answer," Bell said, "would be that there just aren't that many dark matter halos." Bell said. "This is part of the grand effort to test that paradigm."

The papers are titled, "Andromeda XXIX: A New Dwarf Spheroidal Galaxy 200 kpc from Andromeda," and Andromeda XXVIII: A Dwarf Galaxy more than 350 kpc from Andromeda."

The research is funded in part by the National Science Foundation.

For more information:

Eric Bell: http://www.astro.lsa.umich.edu/~ericbell/
Colin Slater: http://www.astro.lsa.umich.edu/people/gradpg.php?id=44
Abstract of Andromeda XXVIII: A Dwarf Galaxy more than 350 kpc from Andromeda: http://iopscience.iop.org/2041-8205/742/1/L14

Abstract of Andromeda XXIX: A New Dwarf Spheroidal Galaxy 200 kpc from Andromeda: http://iopscience.iop.org/2041-8205/742/1/L15

Nicole Casal Moore | Newswise Science News
Further information:
http://www.umich.edu

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>