Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Newly discovered mechanism propels micromotors

Tiny clusters of particles zip forward, spin, or circle depending on their shape

Scientists studying the behavior of platinum particles immersed in hydrogen peroxide may have discovered a new way to propel microscopic machines. The new mechanism is described in The Journal of Chemical Physics, which is produced by AIP Publishing.

This image shows a possible application of chemical micromotors.

Credit: Daigo Yamamoto/Doshisha

Micro-sized machines operate under very different conditions than their macro-sized counterparts. The high surface-area-to-mass ratio of tiny motors means they require a constant driving force to keep them going. In the past, researchers have relied on asymmetric chemical reactions on the surface of the motors to supply the force.

For example, Janus motors, are spherical particles coated with a different material on each side. One of the sides is typically made of a catalyst like platinum, which speeds up the reaction that converts hydrogen peroxide into water and oxygen. When the Janus motor is immersed in hydrogen peroxide, oxygen bubbles form more quickly on the platinum side, pushing the sphere forward.

Researchers from Doshisha University in Kyoto, Japan have now discovered, however, that two-sided materials aren't necessary to make micromotors move. The researchers placed tiny spheres made only of platinum in hydrogen peroxide and observed the particles' movement through a microscope. Although the individual spheres bounced about randomly, the researchers noticed that clumps of particles began to exhibit regular motions.

The clumps shaped like teardrops moved forward, those that resembled windmills started to spin, and the boomerang shaped clumps traveled in a circle. After creating a theoretical model of the forces at work, the researchers realized they could explain the regular motions by the asymmetrical drag generated by the different shapes.

The researchers envision combining their new type of motors with existing motors to create easily controllable machines with a versatile range of motions.

Micro- and nano-sized machines may one day ferry drugs around the body or help control chemical reactions, but the Japanese team also sees a more fundamental reason to study such tiny systems.

"Micromotors may be used not only as a power source for micromachines and microfactories, but may also give us significant insight regarding mysterious living phenomenon," said Daigo Yamamoto, a researcher in the Molecular Chemical Engineering Laboratory at Doshisha University and an author on the paper that describes the new motors.

The article, " Catalytic micromotor generating self-propelled regular motion through random fluctuation" by Daigo Yamamoto, Atsushi Mukai, Naoaki Okita, Kenichi Yoshikawa and Akihisa Shioi appears in The Journal of Chemical Physics. See:


The Journal of Chemical Physics publishes concise and definitive reports of significant research in the methods and applications of chemical physics. See:

Jason Socrates Bardi | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht OU-led team discovers rare, newborn tri-star system using ALMA
27.10.2016 | University of Oklahoma

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>