Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly discovered mechanism propels micromotors

15.10.2013
Tiny clusters of particles zip forward, spin, or circle depending on their shape

Scientists studying the behavior of platinum particles immersed in hydrogen peroxide may have discovered a new way to propel microscopic machines. The new mechanism is described in The Journal of Chemical Physics, which is produced by AIP Publishing.


This image shows a possible application of chemical micromotors.

Credit: Daigo Yamamoto/Doshisha

Micro-sized machines operate under very different conditions than their macro-sized counterparts. The high surface-area-to-mass ratio of tiny motors means they require a constant driving force to keep them going. In the past, researchers have relied on asymmetric chemical reactions on the surface of the motors to supply the force.

For example, Janus motors, are spherical particles coated with a different material on each side. One of the sides is typically made of a catalyst like platinum, which speeds up the reaction that converts hydrogen peroxide into water and oxygen. When the Janus motor is immersed in hydrogen peroxide, oxygen bubbles form more quickly on the platinum side, pushing the sphere forward.

Researchers from Doshisha University in Kyoto, Japan have now discovered, however, that two-sided materials aren't necessary to make micromotors move. The researchers placed tiny spheres made only of platinum in hydrogen peroxide and observed the particles' movement through a microscope. Although the individual spheres bounced about randomly, the researchers noticed that clumps of particles began to exhibit regular motions.

The clumps shaped like teardrops moved forward, those that resembled windmills started to spin, and the boomerang shaped clumps traveled in a circle. After creating a theoretical model of the forces at work, the researchers realized they could explain the regular motions by the asymmetrical drag generated by the different shapes.

The researchers envision combining their new type of motors with existing motors to create easily controllable machines with a versatile range of motions.

Micro- and nano-sized machines may one day ferry drugs around the body or help control chemical reactions, but the Japanese team also sees a more fundamental reason to study such tiny systems.

"Micromotors may be used not only as a power source for micromachines and microfactories, but may also give us significant insight regarding mysterious living phenomenon," said Daigo Yamamoto, a researcher in the Molecular Chemical Engineering Laboratory at Doshisha University and an author on the paper that describes the new motors.

The article, " Catalytic micromotor generating self-propelled regular motion through random fluctuation" by Daigo Yamamoto, Atsushi Mukai, Naoaki Okita, Kenichi Yoshikawa and Akihisa Shioi appears in The Journal of Chemical Physics. See: http://dx.doi.org/10.1063/1.4813791

ABOUT THE JOURNAL

The Journal of Chemical Physics publishes concise and definitive reports of significant research in the methods and applications of chemical physics. See: http://jcp.aip.org

Jason Socrates Bardi | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>