Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newborn Stars Discovered in Dark Cosmic Cloud

08.07.2010
A wave of massive star formation appears poised to begin within a mysterious, dark cloud in the Milky Way. NASA's Spitzer Space Telescope has revealed a secluded birthplace for stars within a wispy, dark cloud named named M17 SWex.

The dark cloud is part of the larger, parent nebula known as M17, a vast region of our galaxy with a bright, central star cluster.

"We believe we've managed to observe this dark cloud in a very early phase of star formation before its most massive stars have ignited," said Penn State astronomer Matthew Povich, a postdoctoral fellow and the lead author of a study published recently in The Astrophysical Journal Letters. The new research could shed light on the question of how and when massive stars form.

Though astronomers first discovered the dark cloud in the Sagittarius constellation more than 30 years ago, it took the keenness of the Spitzer telescope's instruments to spot the hidden stellar nursery within. Spitzer's infrared vision has shown that M17 SWex is among the closest to Earth and also among the Milky Way's busiest star-making factories, with 488 newly forming stars. More than 200 will become blue-white class B stars, larger and hotter than our Sun. "Most of the stars we've detected are relatively bright," said Povich. "So we predict the actual number of stars forming in M17 SWex is over 10,000, since the fainter stars cannot be detected with the current observations."

Conspicuously absent from M17 SWex are the bluest, hottest, and biggest of new stars -- the class O stars. Though relatively rare in the cosmos, O stars are what light up neighboring regions within the colossal M17 nebula.

One possible answer to this riddle is that developing O stars -- wild, windy, and spewing radiation -- rapidly destroy their dusty envelopes, which Spitzer otherwise would sniff out. But a more likely explanation is that such gigantic stars form later, perhaps needing an extra "nudge" into existence. A shock wave from a burst of star births in the region could set off a chain of massive star formation -- a cosmic "domino effect." In support of this idea, Povich and his colleagues point to a giant "bubble" blown by blue O stars aged some two to five million years in the far left of the Spitzer image. Part of this great smoke ring appears to shape the left, curving border of the M17 nebula, whose interior is lit up by a star cluster about one-million years old. Farther to the right, the shrouded, budding stars in the dark M17 SWex cloud have not yet celebrated their one millionth birthdays -- truly infants in the stellar sense.

The architecture of our galaxy likely plays a role in this chronology. In its orbit around the Milky Way's center, the M17 region is now passing though the Sagittarius spiral arm, one of the giant bands of stars and gas pinwheeling out from our galaxy's hub. The greater concentration of gas and dust in the arm is mashing material together in the M17 region, triggering a round of massive star formation that moves through this cloud, causing a chain reaction.

"The time-sequence of star formation proceeds in the same direction that a spiral arm crosses the M17 cloud complex," Povich says. "The M17 region brings to mind images of other spiral galaxies where the leading edges of the arms appear blue, with young O stars, but the trailing edges are still dark, with obscuring dust like in M17 SWex." The time required, for the M17 region to pass through the edge of the Sagittarius spiral arm is about a million years.

Further investigation of the M17 SWex flying dragon and other clouds may reveal whether massive stars need this added oomph of an expanding shock wave to come to luminous life.

"We hope that astronomers will use M17 SWex as a new laboratory for studying the mystery of how massive star formation really happens," says Povich. "Most very young clouds being studied don't have as much going on as this one does."

In addition to Povich, another member of the research team is Barbara Whitney of the Space Science Institute of Boulder, Colorado.

[ Katrina Voss ]

CONTACTS
Matthew Povich: povich@astro.psu.edu, 814-863-4690
Barbara Kennedy (PIO): 814-863-4682, science@psu.edu

Barbara K. Kennedy | EurekAlert!
Further information:
http://www.psu.edu

More articles from Physics and Astronomy:

nachricht Space radiation won't stop NASA's human exploration
18.10.2017 | NASA/Johnson Space Center

nachricht Study shows how water could have flowed on 'cold and icy' ancient Mars
18.10.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>