Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New window on the early Universe

22.10.2014

Scientists at the Universities of Bonn and Cardiff see good times approaching for astrophysicists after hatching a new observational strategy to distill detailed information from galaxies at the edge of the Universe.

Using two world-class supercomputers, the researchers were able to demonstrate the effectiveness of their approach by simulating the formation of a massive galaxy at the dawn of cosmic time.


The Milky Way through the ALMA telescopic composite

(c) ALMA (ESO/NAOJ/NRAO), C. Padilla


The result of the simulation: the image on the right shows the simulated hydrogen distribution.

© Matteo Tomassetti, University of Bonn

The ALMA radio telescope – which stands at an elevation of 5,000 meters in the Atacama Desert of Chile, one of the driest places on earth – was then used to forge observations of the galaxy, showing how their method improves upon previous efforts.

It is extremely difficult to gather information about galaxies at the edge of the Universe: the signals from these heavenly bodies "dilute" in the course of their billion-year journey through space toward earth, making them difficult observational targets.

Estimating how much molecular hydrogen is present in these galaxies is particularly challenging: the molecule emits almost no radiation. Nevertheless, Astrophysicists are keen to map the abundance of this element: molecular hydrogen is the fundamental building block for new stars; the more of it contained within a particular galaxy, the more stars that galaxy can form.

The carbon trick

Currently, astrophysicists make use of a trick to determine the abundance of molecular hydrogen in a galaxy: they first measure the amount of carbon monoxide – which emits far more light than molecular hydrogen – and then “convert” the carbon monoxide signal to an abundance of molecular hydrogen using a complex procedure. This method, however, is imprecise and prone to error.

"We were able to show that the radiation of neutral carbon is much better suited to observe very distant galaxies", says Dr. Padelis Papadopoulos from the University of Cardiff. "The measured values allow for a very precise estimation of how much molecular hydrogen is present." Unfortunately, the radiation from neutral carbon is almost entirely absorbed by water vapor in the earth's atmosphere, which acts similar to a pair of dark sunglasses when observing the carbon signal.

However, a new radio telescope in the Chilean Atacama Desert, the Atacama Large Millimeter/submillimeter Array (or ALMA), is designed with these limitations in mind. There, at an elevation of 5,000 meters, the conditions are so extremely dry that the telescope can easily pick up the interstellar radiation from carbon atoms.

Looking back 12 billion years into the past

"According to our calculations, ALMA can detect these distant galaxies, the signals of which have been traveling to us for more than 12 billion years", says Matteo Tomassetti, doctoral student of the University of Bonn and lead author of the publication. "Even more importantly: for the first time we are able to precisely determine how much molecular hydrogen is present in these galaxies."

The University of Bonn astrophysicist Professor Cristiano Porciani speaks of a new window to the early universe. "Our theoretical work will have an important impact on observational astronomy", he emphasizes. "It will help us to better understand the mysterious origin of the galaxies."

To carry out their work, the team was awarded resources on two world-class super-computers -- HeCTOR at the University of Edinburgh and Abel at the University of Oslo -- which were made available through a European computing cooperative known as PRACE (Partnership for Advanced Computing in Europe). The study was supported and funded by the Deutsche Forschungsgemeinschaft (DFG) within the framework of the special research area 956, as well as by the International Max Planck Research School.

Publication: M. Tomassetti, C. Porciani, E. Romano-Díaz, A. D. Ludlow, P. P. Papadopoulos: Atomic carbon as a powerful tracer of molecular gas in the high-redshift Universe: perspectives for ALMA; MNRAS Letters; doi: 10/193/mnras/slu137

Contact:
Matteo Tomassetti
Argelander-Institute for Astronomy of the University of Bonn
International Max Planck Research School
Tel.: 0228/73343, E-Mail: mtomas@astro.uni-bonn.de

Professor Cristiano Porciani
Argelander-Institute for Astronomy
Tel.: 0228/73-3664, E-Mail: porciani@astro.uni-bonn.de

Dr. Andreas Archut | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Columbia engineers create artificial graphene in a nanofabricated semiconductor structure
13.12.2017 | Columbia University School of Engineering and Applied Science

nachricht Long-lived storage of a photonic qubit for worldwide teleportation
12.12.2017 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Gecko adhesion technology moves closer to industrial uses

13.12.2017 | Information Technology

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure

13.12.2017 | Physics and Astronomy

Research reveals how diabetes in pregnancy affects baby's heart

13.12.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>