Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New window on the early Universe


Scientists at the Universities of Bonn and Cardiff see good times approaching for astrophysicists after hatching a new observational strategy to distill detailed information from galaxies at the edge of the Universe.

Using two world-class supercomputers, the researchers were able to demonstrate the effectiveness of their approach by simulating the formation of a massive galaxy at the dawn of cosmic time.

The Milky Way through the ALMA telescopic composite

(c) ALMA (ESO/NAOJ/NRAO), C. Padilla

The result of the simulation: the image on the right shows the simulated hydrogen distribution.

© Matteo Tomassetti, University of Bonn

The ALMA radio telescope – which stands at an elevation of 5,000 meters in the Atacama Desert of Chile, one of the driest places on earth – was then used to forge observations of the galaxy, showing how their method improves upon previous efforts.

It is extremely difficult to gather information about galaxies at the edge of the Universe: the signals from these heavenly bodies "dilute" in the course of their billion-year journey through space toward earth, making them difficult observational targets.

Estimating how much molecular hydrogen is present in these galaxies is particularly challenging: the molecule emits almost no radiation. Nevertheless, Astrophysicists are keen to map the abundance of this element: molecular hydrogen is the fundamental building block for new stars; the more of it contained within a particular galaxy, the more stars that galaxy can form.

The carbon trick

Currently, astrophysicists make use of a trick to determine the abundance of molecular hydrogen in a galaxy: they first measure the amount of carbon monoxide – which emits far more light than molecular hydrogen – and then “convert” the carbon monoxide signal to an abundance of molecular hydrogen using a complex procedure. This method, however, is imprecise and prone to error.

"We were able to show that the radiation of neutral carbon is much better suited to observe very distant galaxies", says Dr. Padelis Papadopoulos from the University of Cardiff. "The measured values allow for a very precise estimation of how much molecular hydrogen is present." Unfortunately, the radiation from neutral carbon is almost entirely absorbed by water vapor in the earth's atmosphere, which acts similar to a pair of dark sunglasses when observing the carbon signal.

However, a new radio telescope in the Chilean Atacama Desert, the Atacama Large Millimeter/submillimeter Array (or ALMA), is designed with these limitations in mind. There, at an elevation of 5,000 meters, the conditions are so extremely dry that the telescope can easily pick up the interstellar radiation from carbon atoms.

Looking back 12 billion years into the past

"According to our calculations, ALMA can detect these distant galaxies, the signals of which have been traveling to us for more than 12 billion years", says Matteo Tomassetti, doctoral student of the University of Bonn and lead author of the publication. "Even more importantly: for the first time we are able to precisely determine how much molecular hydrogen is present in these galaxies."

The University of Bonn astrophysicist Professor Cristiano Porciani speaks of a new window to the early universe. "Our theoretical work will have an important impact on observational astronomy", he emphasizes. "It will help us to better understand the mysterious origin of the galaxies."

To carry out their work, the team was awarded resources on two world-class super-computers -- HeCTOR at the University of Edinburgh and Abel at the University of Oslo -- which were made available through a European computing cooperative known as PRACE (Partnership for Advanced Computing in Europe). The study was supported and funded by the Deutsche Forschungsgemeinschaft (DFG) within the framework of the special research area 956, as well as by the International Max Planck Research School.

Publication: M. Tomassetti, C. Porciani, E. Romano-Díaz, A. D. Ludlow, P. P. Papadopoulos: Atomic carbon as a powerful tracer of molecular gas in the high-redshift Universe: perspectives for ALMA; MNRAS Letters; doi: 10/193/mnras/slu137

Matteo Tomassetti
Argelander-Institute for Astronomy of the University of Bonn
International Max Planck Research School
Tel.: 0228/73343, E-Mail:

Professor Cristiano Porciani
Argelander-Institute for Astronomy
Tel.: 0228/73-3664, E-Mail:

Dr. Andreas Archut | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>