Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New window on the early Universe

22.10.2014

Scientists at the Universities of Bonn and Cardiff see good times approaching for astrophysicists after hatching a new observational strategy to distill detailed information from galaxies at the edge of the Universe.

Using two world-class supercomputers, the researchers were able to demonstrate the effectiveness of their approach by simulating the formation of a massive galaxy at the dawn of cosmic time.


The Milky Way through the ALMA telescopic composite

(c) ALMA (ESO/NAOJ/NRAO), C. Padilla


The result of the simulation: the image on the right shows the simulated hydrogen distribution.

© Matteo Tomassetti, University of Bonn

The ALMA radio telescope – which stands at an elevation of 5,000 meters in the Atacama Desert of Chile, one of the driest places on earth – was then used to forge observations of the galaxy, showing how their method improves upon previous efforts.

It is extremely difficult to gather information about galaxies at the edge of the Universe: the signals from these heavenly bodies "dilute" in the course of their billion-year journey through space toward earth, making them difficult observational targets.

Estimating how much molecular hydrogen is present in these galaxies is particularly challenging: the molecule emits almost no radiation. Nevertheless, Astrophysicists are keen to map the abundance of this element: molecular hydrogen is the fundamental building block for new stars; the more of it contained within a particular galaxy, the more stars that galaxy can form.

The carbon trick

Currently, astrophysicists make use of a trick to determine the abundance of molecular hydrogen in a galaxy: they first measure the amount of carbon monoxide – which emits far more light than molecular hydrogen – and then “convert” the carbon monoxide signal to an abundance of molecular hydrogen using a complex procedure. This method, however, is imprecise and prone to error.

"We were able to show that the radiation of neutral carbon is much better suited to observe very distant galaxies", says Dr. Padelis Papadopoulos from the University of Cardiff. "The measured values allow for a very precise estimation of how much molecular hydrogen is present." Unfortunately, the radiation from neutral carbon is almost entirely absorbed by water vapor in the earth's atmosphere, which acts similar to a pair of dark sunglasses when observing the carbon signal.

However, a new radio telescope in the Chilean Atacama Desert, the Atacama Large Millimeter/submillimeter Array (or ALMA), is designed with these limitations in mind. There, at an elevation of 5,000 meters, the conditions are so extremely dry that the telescope can easily pick up the interstellar radiation from carbon atoms.

Looking back 12 billion years into the past

"According to our calculations, ALMA can detect these distant galaxies, the signals of which have been traveling to us for more than 12 billion years", says Matteo Tomassetti, doctoral student of the University of Bonn and lead author of the publication. "Even more importantly: for the first time we are able to precisely determine how much molecular hydrogen is present in these galaxies."

The University of Bonn astrophysicist Professor Cristiano Porciani speaks of a new window to the early universe. "Our theoretical work will have an important impact on observational astronomy", he emphasizes. "It will help us to better understand the mysterious origin of the galaxies."

To carry out their work, the team was awarded resources on two world-class super-computers -- HeCTOR at the University of Edinburgh and Abel at the University of Oslo -- which were made available through a European computing cooperative known as PRACE (Partnership for Advanced Computing in Europe). The study was supported and funded by the Deutsche Forschungsgemeinschaft (DFG) within the framework of the special research area 956, as well as by the International Max Planck Research School.

Publication: M. Tomassetti, C. Porciani, E. Romano-Díaz, A. D. Ludlow, P. P. Papadopoulos: Atomic carbon as a powerful tracer of molecular gas in the high-redshift Universe: perspectives for ALMA; MNRAS Letters; doi: 10/193/mnras/slu137

Contact:
Matteo Tomassetti
Argelander-Institute for Astronomy of the University of Bonn
International Max Planck Research School
Tel.: 0228/73343, E-Mail: mtomas@astro.uni-bonn.de

Professor Cristiano Porciani
Argelander-Institute for Astronomy
Tel.: 0228/73-3664, E-Mail: porciani@astro.uni-bonn.de

Dr. Andreas Archut | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>