Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Update of the FPLO program package

29.04.2014

The Leibniz-Institute for Solid State and Material Sciences (IFW) Dresden published an updated version of their program package for the calculation of electronic structures.

The density functional theory is an important method to calculate quantum mechanical properties of atoms, molecules, and solids.

Its development and utilization was awarded with the Nobel prize in chemistry for Walter Kohn and John Pople in 1998. Using the density functional theory one can evaluate, for example, chemical binding energies and optical spectra as well as mechanical, electric, and magnetic properties of materials.

In this way it is possible to predict material specific properties or to explain related experimental findings solely from the chemical composition and the atomistic structure of the material.

The required numerical schemes have to solve implicit, non-linear integro-differential systems of equations, developed by Walter Kohn and other authors. Such schemes are being developed world-wide using several competing methods of resolution with specific advantages and shortcomings.

One of these numerical schemes has been developed by Dr. Klaus Koepernik at the Leibniz-Institute for Solid State and Material Sciences (IFW) Dresden since 1999. Its name FPLO© stands for Full-Potential, Local-Orbital; its advantages consist in a balanced combination of high numerical precision with efficiency and in its easy handling.

The advantage of an in-house development, as carried out at IFW, mainly consists in the possibility to quickly implement new features satisfying emerging research needs.

The FPLO© package comprises about 300,000 lines of code and has about 200 licensed users worldwide.

A new version of this package was released at the end of March, 2014. Details can be found at http://www.fplo.de/.

The development of electron theory and related methods in Dresden started in the 1950ies and is connected with the names of W. Macke, P. Ziesche, and H. Eschrig, the founding director of the IFW,

Further information:
Dr. Manuel Richter
Phone. ++49 (0) 351 4659-360
m.richter@ifw-dresden.de

Weitere Informationen:

http://www.fplo.de/

Dr. Carola Langer | idw - Informationsdienst Wissenschaft

Further reports about: FPLO© Leibniz-Institut advantage binding combination composition findings properties

More articles from Physics and Astronomy:

nachricht The material that obscures supermassive black holes
26.09.2017 | Instituto de Astrofísica de Canarias (IAC)

nachricht Creative use of noise brings bio-inspired electronic improvement
26.09.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

The material that obscures supermassive black holes

26.09.2017 | Physics and Astronomy

Ageless ears? Elderly barn owls do not become hard of hearing

26.09.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>