Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Update of the FPLO program package

29.04.2014

The Leibniz-Institute for Solid State and Material Sciences (IFW) Dresden published an updated version of their program package for the calculation of electronic structures.

The density functional theory is an important method to calculate quantum mechanical properties of atoms, molecules, and solids.

Its development and utilization was awarded with the Nobel prize in chemistry for Walter Kohn and John Pople in 1998. Using the density functional theory one can evaluate, for example, chemical binding energies and optical spectra as well as mechanical, electric, and magnetic properties of materials.

In this way it is possible to predict material specific properties or to explain related experimental findings solely from the chemical composition and the atomistic structure of the material.

The required numerical schemes have to solve implicit, non-linear integro-differential systems of equations, developed by Walter Kohn and other authors. Such schemes are being developed world-wide using several competing methods of resolution with specific advantages and shortcomings.

One of these numerical schemes has been developed by Dr. Klaus Koepernik at the Leibniz-Institute for Solid State and Material Sciences (IFW) Dresden since 1999. Its name FPLO© stands for Full-Potential, Local-Orbital; its advantages consist in a balanced combination of high numerical precision with efficiency and in its easy handling.

The advantage of an in-house development, as carried out at IFW, mainly consists in the possibility to quickly implement new features satisfying emerging research needs.

The FPLO© package comprises about 300,000 lines of code and has about 200 licensed users worldwide.

A new version of this package was released at the end of March, 2014. Details can be found at http://www.fplo.de/.

The development of electron theory and related methods in Dresden started in the 1950ies and is connected with the names of W. Macke, P. Ziesche, and H. Eschrig, the founding director of the IFW,

Further information:
Dr. Manuel Richter
Phone. ++49 (0) 351 4659-360
m.richter@ifw-dresden.de

Weitere Informationen:

http://www.fplo.de/

Dr. Carola Langer | idw - Informationsdienst Wissenschaft

Further reports about: FPLO© Leibniz-Institut advantage binding combination composition findings properties

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>