Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Update of the FPLO program package

29.04.2014

The Leibniz-Institute for Solid State and Material Sciences (IFW) Dresden published an updated version of their program package for the calculation of electronic structures.

The density functional theory is an important method to calculate quantum mechanical properties of atoms, molecules, and solids.

Its development and utilization was awarded with the Nobel prize in chemistry for Walter Kohn and John Pople in 1998. Using the density functional theory one can evaluate, for example, chemical binding energies and optical spectra as well as mechanical, electric, and magnetic properties of materials.

In this way it is possible to predict material specific properties or to explain related experimental findings solely from the chemical composition and the atomistic structure of the material.

The required numerical schemes have to solve implicit, non-linear integro-differential systems of equations, developed by Walter Kohn and other authors. Such schemes are being developed world-wide using several competing methods of resolution with specific advantages and shortcomings.

One of these numerical schemes has been developed by Dr. Klaus Koepernik at the Leibniz-Institute for Solid State and Material Sciences (IFW) Dresden since 1999. Its name FPLO© stands for Full-Potential, Local-Orbital; its advantages consist in a balanced combination of high numerical precision with efficiency and in its easy handling.

The advantage of an in-house development, as carried out at IFW, mainly consists in the possibility to quickly implement new features satisfying emerging research needs.

The FPLO© package comprises about 300,000 lines of code and has about 200 licensed users worldwide.

A new version of this package was released at the end of March, 2014. Details can be found at http://www.fplo.de/.

The development of electron theory and related methods in Dresden started in the 1950ies and is connected with the names of W. Macke, P. Ziesche, and H. Eschrig, the founding director of the IFW,

Further information:
Dr. Manuel Richter
Phone. ++49 (0) 351 4659-360
m.richter@ifw-dresden.de

Weitere Informationen:

http://www.fplo.de/

Dr. Carola Langer | idw - Informationsdienst Wissenschaft

Further reports about: FPLO© Leibniz-Institut advantage binding combination composition findings properties

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>