Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Update of the FPLO program package

29.04.2014

The Leibniz-Institute for Solid State and Material Sciences (IFW) Dresden published an updated version of their program package for the calculation of electronic structures.

The density functional theory is an important method to calculate quantum mechanical properties of atoms, molecules, and solids.

Its development and utilization was awarded with the Nobel prize in chemistry for Walter Kohn and John Pople in 1998. Using the density functional theory one can evaluate, for example, chemical binding energies and optical spectra as well as mechanical, electric, and magnetic properties of materials.

In this way it is possible to predict material specific properties or to explain related experimental findings solely from the chemical composition and the atomistic structure of the material.

The required numerical schemes have to solve implicit, non-linear integro-differential systems of equations, developed by Walter Kohn and other authors. Such schemes are being developed world-wide using several competing methods of resolution with specific advantages and shortcomings.

One of these numerical schemes has been developed by Dr. Klaus Koepernik at the Leibniz-Institute for Solid State and Material Sciences (IFW) Dresden since 1999. Its name FPLO© stands for Full-Potential, Local-Orbital; its advantages consist in a balanced combination of high numerical precision with efficiency and in its easy handling.

The advantage of an in-house development, as carried out at IFW, mainly consists in the possibility to quickly implement new features satisfying emerging research needs.

The FPLO© package comprises about 300,000 lines of code and has about 200 licensed users worldwide.

A new version of this package was released at the end of March, 2014. Details can be found at http://www.fplo.de/.

The development of electron theory and related methods in Dresden started in the 1950ies and is connected with the names of W. Macke, P. Ziesche, and H. Eschrig, the founding director of the IFW,

Further information:
Dr. Manuel Richter
Phone. ++49 (0) 351 4659-360
m.richter@ifw-dresden.de

Weitere Informationen:

http://www.fplo.de/

Dr. Carola Langer | idw - Informationsdienst Wissenschaft

Further reports about: FPLO© Leibniz-Institut advantage binding combination composition findings properties

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>