Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Technology: The Goose Bump Sensor

25.06.2014

Wearable Human-Machine Interface Developed at KAIST in South Korea Quantitatively Measures Goose Bumps -- a Step Toward Direct Detection of Human Emotional States

Can emotional states be measured quantitatively, and if so what would advertising, manufacturing and social media companies do with that data? Imagine a world in which a consumer's real-time physical and emotional response helped to determine his/her experience of music, online ads or the temperature in the room.


Young-Ho Cho/KAIST

The Goose Bump Detector: a skin piloerection monitoring sensor conformally attached to the dorsal forearm.

That may not be so far away -- a team of researchers at KAIST in Daejeon, South Korea has developed a flexible, wearable 20mm x 20mm polymer sensor that can directly measure the degree and occurrence on the skin of goose bumps (technically known as "piloerection"), which is caused by sudden changes in body temperature or emotional states.

Described this week in the journal Applied Physics Letters, from AIP Publishing, the technology is based on an electronic device known as a coplanar capacitor and detects goose bumps by virtue of a simple, linear relation between the deformation of the sensor and the decrease of the capacitance.

“We found that the height of the goose bump and the piloerection duration can be deduced by analyzing obtained capacitance change trace,” explained Young-Ho Cho.

While more work still needs to be done to correlate such physical measurements with emotional states, the work suggests that quantitatively monitoring goose bumps in real-time as an indicator of human physical or emotional status is possible, which could pave the way for personalized advertising, music streams or other services informed by directly access to the emotions of the end user.

"In the future, human emotions will be regarded like any typical biometric information, including body temperature or blood pressure," Cho said.

How the Device was Made

Through use of microfabrication technology, Cho and colleagues built the sensor using a conductive polymer called PEDOT:PSS for the capacitors, which is flexibile compared to brittle metallic conductive materials. The capacitors were embedded in a silicon substrate via a multi-step spin-coating process, giving them a spiral shape and coplanar structure. This gave them high capacitive density and high deformability while remaining only 1.2 micrometers thick.

The silicon substrate, known as Ecoflex 0030, was selected due to its biocompatibility and high degree of flexibility relative to human skin. It is also highly thermal and photo-stability, which allows the embedded polymer devices to maintain their performance in diverse conditions.

They attached these sensors to the inside of a 28-year old subject’s dorsal forearm and had him grab ahold of ide cubes to induce a sudden cold shock. This stimulated piloerection, deforming the sensors and causing their capacitance to notably decrease.

Future work includes scaling down the signal processing module and capacitance measurement system to be co-mounted on skin with the sensor.

The article "A Flexible Skin Piloerection Monitoring Sensor" by Jaemin Kim, Dae Geon Seo, and Young-Ho Cho will be published in the journal Applied Physics Letters on June 24, 2014 (DOI: 10.1063/1.4881888). After that date, it can be accessed at: http://scitation.aip.org/content/aip/journal/apl/104/25/10.1063/1.4881888

ABOUT THE JOURNAL

Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See: http://apl.aip.org

Jason Socrates Bardi | newswise

Further reports about: AIP Bump Goose Bump Detector KAIST Physics Sensor Technology emotions piloerection skin temperature

More articles from Physics and Astronomy:

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>