Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Technology: The Goose Bump Sensor

25.06.2014

Wearable Human-Machine Interface Developed at KAIST in South Korea Quantitatively Measures Goose Bumps -- a Step Toward Direct Detection of Human Emotional States

Can emotional states be measured quantitatively, and if so what would advertising, manufacturing and social media companies do with that data? Imagine a world in which a consumer's real-time physical and emotional response helped to determine his/her experience of music, online ads or the temperature in the room.


Young-Ho Cho/KAIST

The Goose Bump Detector: a skin piloerection monitoring sensor conformally attached to the dorsal forearm.

That may not be so far away -- a team of researchers at KAIST in Daejeon, South Korea has developed a flexible, wearable 20mm x 20mm polymer sensor that can directly measure the degree and occurrence on the skin of goose bumps (technically known as "piloerection"), which is caused by sudden changes in body temperature or emotional states.

Described this week in the journal Applied Physics Letters, from AIP Publishing, the technology is based on an electronic device known as a coplanar capacitor and detects goose bumps by virtue of a simple, linear relation between the deformation of the sensor and the decrease of the capacitance.

“We found that the height of the goose bump and the piloerection duration can be deduced by analyzing obtained capacitance change trace,” explained Young-Ho Cho.

While more work still needs to be done to correlate such physical measurements with emotional states, the work suggests that quantitatively monitoring goose bumps in real-time as an indicator of human physical or emotional status is possible, which could pave the way for personalized advertising, music streams or other services informed by directly access to the emotions of the end user.

"In the future, human emotions will be regarded like any typical biometric information, including body temperature or blood pressure," Cho said.

How the Device was Made

Through use of microfabrication technology, Cho and colleagues built the sensor using a conductive polymer called PEDOT:PSS for the capacitors, which is flexibile compared to brittle metallic conductive materials. The capacitors were embedded in a silicon substrate via a multi-step spin-coating process, giving them a spiral shape and coplanar structure. This gave them high capacitive density and high deformability while remaining only 1.2 micrometers thick.

The silicon substrate, known as Ecoflex 0030, was selected due to its biocompatibility and high degree of flexibility relative to human skin. It is also highly thermal and photo-stability, which allows the embedded polymer devices to maintain their performance in diverse conditions.

They attached these sensors to the inside of a 28-year old subject’s dorsal forearm and had him grab ahold of ide cubes to induce a sudden cold shock. This stimulated piloerection, deforming the sensors and causing their capacitance to notably decrease.

Future work includes scaling down the signal processing module and capacitance measurement system to be co-mounted on skin with the sensor.

The article "A Flexible Skin Piloerection Monitoring Sensor" by Jaemin Kim, Dae Geon Seo, and Young-Ho Cho will be published in the journal Applied Physics Letters on June 24, 2014 (DOI: 10.1063/1.4881888). After that date, it can be accessed at: http://scitation.aip.org/content/aip/journal/apl/104/25/10.1063/1.4881888

ABOUT THE JOURNAL

Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See: http://apl.aip.org

Jason Socrates Bardi | newswise

Further reports about: AIP Bump Goose Bump Detector KAIST Physics Sensor Technology emotions piloerection skin temperature

More articles from Physics and Astronomy:

nachricht Interstellar seeds could create oases of life
28.08.2015 | Harvard-Smithsonian Center for Astrophysics

nachricht Draw out of the predicted interatomic force
28.08.2015 | Hiroshima University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

Im Focus: FIC Proteins Send Bacteria Into Hibernation

Bacteria do not cease to amaze us with their survival strategies. A research team from the University of Basel's Biozentrum has now discovered how bacteria enter a sleep mode using a so-called FIC toxin. In the current issue of “Cell Reports”, the scientists describe the mechanism of action and also explain why their discovery provides new insights into the evolution of pathogens.

For many poisons there are antidotes which neutralize their toxic effect. Toxin-antitoxin systems in bacteria work in a similar manner: As long as a cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Production research by Fraunhofer IAO honored with three awards at the ICPR 2015

31.08.2015 | Awards Funding

Single-Crystal Phosphors Suitable for Ultra-Bright, High-Power White Light Sources

31.08.2015 | Materials Sciences

Manchester Team Reveal New, Stable 2D Materials

31.08.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>