Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique reveals supernova progenitor

22.05.2014

Wolf-Rayet stars are very large and very hot. Astronomers have long wondered whether Wolf-Rayet stars are the progenitors of certain types of supernovae. New work from the Palomar Transient Factory team, including Carnegie's Mansi Kasliwal, is homing in on the answer. They have identified a Wolf-Rayet star as the likely progenitor of a recently exploded supernova. This work is published by Nature.

Wolf-Rayet stars are notable for having strong stellar winds and being deficient in hydrogen when compared with other stars. Taken together, these two factors give Wolf-Rayet stars easily recognizable stellar signatures.

It is thought that Wolf-Rayet stars explode as type IIb, Ib or Ic supernovae. Yet, direct evidence linking these types of supernovae to their progenitor stars has heretofore been missing.

The team, led by Avishay Gal-Yam of the Weizmann Institute of Science in Israel, applied a novel observational method called flash spectroscopy to identify the likely progenitor of a type IIb supernova called SN 2013cu just over 15 hours after it exploded.

"This supernova was discovered by the Palomar 48-inch telescope in California. The on-duty PTF team member in Israel promptly sounded an alert about this supernova discovery enabling another PTF team member to get a spectrum with the Keck telescope before the sun rose in Hawaii," Kasliwal explained. "The global rapid response protocol ensures the sun never rises for the PTF team!"

When the supernova exploded, it flash ionized its immediate surroundings, giving the astronomers a direct glimpse of the progenitor star's chemistry. This opportunity lasts only for a day before the supernova blast wave sweeps the ionization away. So it's crucial to rapidly respond to a young supernova discovery to get the flash spectrum in the nick of time.

The observations found evidence of composition and shape that aligns with that of a Nitrogen-rich Wolf-Rayet star. What's more, the progenitor star likely experienced an increased loss of mass shortly before the explosion, which is consistent with model predictions for Wolf-Rayet explosions. These techniques shed fresh light on the poorly understood evolution of massive stars.

Previously when looking for a pre-explosion star using the Hubble Space Telescope, astronomers could only look over a range of about 20 megaparsecs. But using these new tools they can increase that distance by a factor of five, allowing them to identify many more supernovae progenitors.

###

The Palomar Transient Factory collaboration is led by Shri Kulkarni of the California Institute of Technology. PTF has discovered more than 2000 supernovae during its four and a half years of observations, including many rare and exotic types of cosmic outbursts.

This research was supported by the I-CORE Program \The Quantum Universe" of the Planning and Budgeting Committee and The Israel Science Foundation; grants from the ISF, BSF, GIF, Minerva, the FP7/ERC, and a Kimmel Investigator award.; support from the Hubble and Carnegie-Princeton Fellowships; support from the Arye Dissentshik career development chair and a grant from the Israeli MOST; support from the NSF; support from an NSF Postdoctoral Fellowship; support from the TABASGO Foundation, the Christopher R. Redlich Fund, and NSF grant AST-1211916. The National Energy Research Scientific Computing Center, supported by the Office of Science of the U.S. Department of Energy, provided staff, computational resources, and data storage for this project.

The intermediate Palomar Transient Factory (iPTF)—led by the California Institute of Technology (Caltech)—started searching the skies for certain types of stars and related phenomena in February. The iPTF was built on the legacy of the Palomar Transient Factory (PTF), designed in 2008 to systematically chart the transient sky by using a robotic observing system mounted on the 48-inch Samuel Oschin Telescope on Palomar Mountain near San Diego, California. iPTF is a scientific collaboration among the California Institute of Technology, Los Alamos National Laboratory, the University of Wisconsin, Milwaukee, the Oskar Klein Center, the Weizmann Institute of Science, the TANGO Program of the University System of Taiwan, and the Kavli Institute for the Physics and Mathematics of the Universe.

The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Mansi Kasliwal | Eurek Alert!

Further reports about: Carnegie Factory Hubble NSF PTF Palomar Telescope progenitor supernovae technique

More articles from Physics and Astronomy:

nachricht Scientific achievements during the operation of Lomonosov satellite
18.12.2017 | Lomonosov Moscow State University

nachricht Quantum memory with record-breaking capacity based on laser-cooled atoms
18.12.2017 | Faculty of Physics University of Warsaw

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

The body's street sweepers

18.12.2017 | Life Sciences

Fast flowing heat in layered material heterostructures

18.12.2017 | Materials Sciences

Life on the edge prepares plants for climate change

18.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>