Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New technique reveals supernova progenitor


Wolf-Rayet stars are very large and very hot. Astronomers have long wondered whether Wolf-Rayet stars are the progenitors of certain types of supernovae. New work from the Palomar Transient Factory team, including Carnegie's Mansi Kasliwal, is homing in on the answer. They have identified a Wolf-Rayet star as the likely progenitor of a recently exploded supernova. This work is published by Nature.

Wolf-Rayet stars are notable for having strong stellar winds and being deficient in hydrogen when compared with other stars. Taken together, these two factors give Wolf-Rayet stars easily recognizable stellar signatures.

It is thought that Wolf-Rayet stars explode as type IIb, Ib or Ic supernovae. Yet, direct evidence linking these types of supernovae to their progenitor stars has heretofore been missing.

The team, led by Avishay Gal-Yam of the Weizmann Institute of Science in Israel, applied a novel observational method called flash spectroscopy to identify the likely progenitor of a type IIb supernova called SN 2013cu just over 15 hours after it exploded.

"This supernova was discovered by the Palomar 48-inch telescope in California. The on-duty PTF team member in Israel promptly sounded an alert about this supernova discovery enabling another PTF team member to get a spectrum with the Keck telescope before the sun rose in Hawaii," Kasliwal explained. "The global rapid response protocol ensures the sun never rises for the PTF team!"

When the supernova exploded, it flash ionized its immediate surroundings, giving the astronomers a direct glimpse of the progenitor star's chemistry. This opportunity lasts only for a day before the supernova blast wave sweeps the ionization away. So it's crucial to rapidly respond to a young supernova discovery to get the flash spectrum in the nick of time.

The observations found evidence of composition and shape that aligns with that of a Nitrogen-rich Wolf-Rayet star. What's more, the progenitor star likely experienced an increased loss of mass shortly before the explosion, which is consistent with model predictions for Wolf-Rayet explosions. These techniques shed fresh light on the poorly understood evolution of massive stars.

Previously when looking for a pre-explosion star using the Hubble Space Telescope, astronomers could only look over a range of about 20 megaparsecs. But using these new tools they can increase that distance by a factor of five, allowing them to identify many more supernovae progenitors.


The Palomar Transient Factory collaboration is led by Shri Kulkarni of the California Institute of Technology. PTF has discovered more than 2000 supernovae during its four and a half years of observations, including many rare and exotic types of cosmic outbursts.

This research was supported by the I-CORE Program \The Quantum Universe" of the Planning and Budgeting Committee and The Israel Science Foundation; grants from the ISF, BSF, GIF, Minerva, the FP7/ERC, and a Kimmel Investigator award.; support from the Hubble and Carnegie-Princeton Fellowships; support from the Arye Dissentshik career development chair and a grant from the Israeli MOST; support from the NSF; support from an NSF Postdoctoral Fellowship; support from the TABASGO Foundation, the Christopher R. Redlich Fund, and NSF grant AST-1211916. The National Energy Research Scientific Computing Center, supported by the Office of Science of the U.S. Department of Energy, provided staff, computational resources, and data storage for this project.

The intermediate Palomar Transient Factory (iPTF)—led by the California Institute of Technology (Caltech)—started searching the skies for certain types of stars and related phenomena in February. The iPTF was built on the legacy of the Palomar Transient Factory (PTF), designed in 2008 to systematically chart the transient sky by using a robotic observing system mounted on the 48-inch Samuel Oschin Telescope on Palomar Mountain near San Diego, California. iPTF is a scientific collaboration among the California Institute of Technology, Los Alamos National Laboratory, the University of Wisconsin, Milwaukee, the Oskar Klein Center, the Weizmann Institute of Science, the TANGO Program of the University System of Taiwan, and the Kavli Institute for the Physics and Mathematics of the Universe.

The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Mansi Kasliwal | Eurek Alert!

Further reports about: Carnegie Factory Hubble NSF PTF Palomar Telescope progenitor supernovae technique

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>