Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique for measuring nanostructures

26.08.2014

Bringing two electrical insulators together to create an electrical superconductor: Anyone wishing to analyze such phenomena in nanostructures will soon come up against metrological limitations – unless a new method is used that Würzburg physicists have helped to develop.

Modern electronic devices contain components such as transistors and diodes consisting of semiconductor layers made of silicon, germanium or gallium, and arsenic. Semiconductors made from these chemical elements have relatively simple properties that have been well characterized scientifically.


X-ray interference pattern measured while studying complex nano-layer structures. The sketch inserted illustrates the path of the x-ray beam relative to the surface of the sample.

(Graphic: Sebastian Macke)

Likewise, the possible applications for such layer structures in memory modules and microprocessors are also simple: “The primary objectives of technological improvements are further miniaturization, increasing component density, and greater speed,” says physics professor Vladimir Hinkov from the University of Würzburg.

Elements that reveal interesting phenomena

On the other hand, science expects to unearth entirely new possibilities with components that contain manganese, nickel, titanium, and other elements from the so-called subgroups. “These metals have electron clouds that enable more complex bonds and electron configurations.

This leads to physical phenomena that are unknown in semiconductors,” says Hinkov. As examples of such phenomena he mentions tremendous magnetoresistance and various magnetic orders, all of which occur in oxides of these metals.

Even more interesting application possibilities are opened up when these oxides are placed on top of each other in ultra-thin layers, some only a few atoms thick.

For example, electrical resistance completely disappears at the interface between strontium titanate (SrTiO3) and lanthanum aluminate (LaAlO3) – despite the fact that both materials in themselves have very high electrical resistance they become a superconductor at their shared interface. So, it is no wonder that such nanostructures are the subject of intensive research.

Why the analysis of nanostructures is complicated

Chemical composition, magnetic order, distribution of electrons in the electron clouds: “Recording these properties sounds like an easy task, but in reality it is extremely complicated and conventional measurement methods can be used in very few cases,” says the Würzburg professor of physics. One reason for this is that the phenomena of interest occur in the nanocosmos, on length scales of just a few nanometers.

Of course, there are measurement methods with nanometer resolution, but these have disadvantages. One example is popular Scanning Transmission Electron Microscopy (STEM). Here, thin slices are removed from a nanostructure and scanned with an electron beam. The sample therefore has to be destroyed for the test – but doing so may change the properties that you actually want to analyze.

What the newly developed measurement method can do

With Vladimir Hinkov as the coordinator, a team of scientists from Germany, Canada, and the USA has now developed a promising new measurement method and presented it in the journal “Advanced Materials”. It works without destroying anything, offers a nanometer resolution, identifies the chemical elements involved, and is able to determine both the magnetic order and the electron distribution. Tiny traces of elements hidden deep in the nanostructure can also be identified using this method. Chemical profiles can be determined even in structures made from many elements and with complex layering.

The method, an enhancement of resonant x-ray reflectometry, is based on the scattering of x-rays with a wavelength of a few nanometers at the interfaces of the layer structure: The various scattered partial beams are then superimposed and measured. The measurements are processed accordingly to deliver an image of the structure with depth resolution. In this approach, the method resembles optical holography, which is used to generate images with spatial resolution.

Why success was dependent on many specialists

“An undertaking of this magnitude was only possible with the involvement of colleagues from many different disciplines,” says Hinkov. First you need x-ray light of such high intensity and quality as can only be generated using synchrotrons. The measurements are taken using highly specialized instruments, which the researchers set up on the synchrotron itself.

In addition, nanostructures of the highest quality are required in order to refine and test the method. The measurement data are analyzed using specially developed software and, finally, the results need to be discussed with theoreticians to arrive at a better understanding of the phenomena.

The next steps in the research

“We have been working intensively on this project for several years, and now our patience has really paid off,” says the Würzburg physicist happily. While it is true that the layer structures examined are not yet components for applications, the materials used are technologically relevant and the next development stages are clear: “Research into structures with interesting magnetic and electronic properties and, in the not too distant future, the design of elements with customized physical and technological properties,” explains Hinkov. Switchable magnetism, superconductivity, and novel sensors are some of the applications that offer promising possibilities here.

“Element Specific Monolayer Depth Profiling”, Sebastian Macke, Abdullah Radi, Jorge E. Hamann-Borrero, Martin Bluschke, Sebastian Brück, Eberhard Goering, Ronny Sutarto, Feizhou He, Georg Cristiani, Meng Wu, Eva Benckiser, Hanns-Ulrich Habermeier, Gennady Logvenov, Nicolas Gauquelin, Gianluigi A. Botton, Adam P. Kajdos, Susanne Stemmer, Georg A. Sawatzky, Maurits W. Haverkort, Bernhard Keimer, and Vladimir Hinkov. Advanced Materials, August 8, 2014, DOI: 10.1002/adma.201402028

Contact

Prof. Dr. Vladimir Hinkov, Department of Experimental Physics IV, University of Würzburg, T +49 (0)931 31-84481, hinkov@physik.uni-wuerzburg.de

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Physics and Astronomy:

nachricht Present-day measurements yield insights into clouds of the past
27.05.2016 | Paul Scherrer Institut (PSI)

nachricht NASA scientist suggests possible link between primordial black holes and dark matter
25.05.2016 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>