Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New technique for measuring nanostructures


Bringing two electrical insulators together to create an electrical superconductor: Anyone wishing to analyze such phenomena in nanostructures will soon come up against metrological limitations – unless a new method is used that Würzburg physicists have helped to develop.

Modern electronic devices contain components such as transistors and diodes consisting of semiconductor layers made of silicon, germanium or gallium, and arsenic. Semiconductors made from these chemical elements have relatively simple properties that have been well characterized scientifically.

X-ray interference pattern measured while studying complex nano-layer structures. The sketch inserted illustrates the path of the x-ray beam relative to the surface of the sample.

(Graphic: Sebastian Macke)

Likewise, the possible applications for such layer structures in memory modules and microprocessors are also simple: “The primary objectives of technological improvements are further miniaturization, increasing component density, and greater speed,” says physics professor Vladimir Hinkov from the University of Würzburg.

Elements that reveal interesting phenomena

On the other hand, science expects to unearth entirely new possibilities with components that contain manganese, nickel, titanium, and other elements from the so-called subgroups. “These metals have electron clouds that enable more complex bonds and electron configurations.

This leads to physical phenomena that are unknown in semiconductors,” says Hinkov. As examples of such phenomena he mentions tremendous magnetoresistance and various magnetic orders, all of which occur in oxides of these metals.

Even more interesting application possibilities are opened up when these oxides are placed on top of each other in ultra-thin layers, some only a few atoms thick.

For example, electrical resistance completely disappears at the interface between strontium titanate (SrTiO3) and lanthanum aluminate (LaAlO3) – despite the fact that both materials in themselves have very high electrical resistance they become a superconductor at their shared interface. So, it is no wonder that such nanostructures are the subject of intensive research.

Why the analysis of nanostructures is complicated

Chemical composition, magnetic order, distribution of electrons in the electron clouds: “Recording these properties sounds like an easy task, but in reality it is extremely complicated and conventional measurement methods can be used in very few cases,” says the Würzburg professor of physics. One reason for this is that the phenomena of interest occur in the nanocosmos, on length scales of just a few nanometers.

Of course, there are measurement methods with nanometer resolution, but these have disadvantages. One example is popular Scanning Transmission Electron Microscopy (STEM). Here, thin slices are removed from a nanostructure and scanned with an electron beam. The sample therefore has to be destroyed for the test – but doing so may change the properties that you actually want to analyze.

What the newly developed measurement method can do

With Vladimir Hinkov as the coordinator, a team of scientists from Germany, Canada, and the USA has now developed a promising new measurement method and presented it in the journal “Advanced Materials”. It works without destroying anything, offers a nanometer resolution, identifies the chemical elements involved, and is able to determine both the magnetic order and the electron distribution. Tiny traces of elements hidden deep in the nanostructure can also be identified using this method. Chemical profiles can be determined even in structures made from many elements and with complex layering.

The method, an enhancement of resonant x-ray reflectometry, is based on the scattering of x-rays with a wavelength of a few nanometers at the interfaces of the layer structure: The various scattered partial beams are then superimposed and measured. The measurements are processed accordingly to deliver an image of the structure with depth resolution. In this approach, the method resembles optical holography, which is used to generate images with spatial resolution.

Why success was dependent on many specialists

“An undertaking of this magnitude was only possible with the involvement of colleagues from many different disciplines,” says Hinkov. First you need x-ray light of such high intensity and quality as can only be generated using synchrotrons. The measurements are taken using highly specialized instruments, which the researchers set up on the synchrotron itself.

In addition, nanostructures of the highest quality are required in order to refine and test the method. The measurement data are analyzed using specially developed software and, finally, the results need to be discussed with theoreticians to arrive at a better understanding of the phenomena.

The next steps in the research

“We have been working intensively on this project for several years, and now our patience has really paid off,” says the Würzburg physicist happily. While it is true that the layer structures examined are not yet components for applications, the materials used are technologically relevant and the next development stages are clear: “Research into structures with interesting magnetic and electronic properties and, in the not too distant future, the design of elements with customized physical and technological properties,” explains Hinkov. Switchable magnetism, superconductivity, and novel sensors are some of the applications that offer promising possibilities here.

“Element Specific Monolayer Depth Profiling”, Sebastian Macke, Abdullah Radi, Jorge E. Hamann-Borrero, Martin Bluschke, Sebastian Brück, Eberhard Goering, Ronny Sutarto, Feizhou He, Georg Cristiani, Meng Wu, Eva Benckiser, Hanns-Ulrich Habermeier, Gennady Logvenov, Nicolas Gauquelin, Gianluigi A. Botton, Adam P. Kajdos, Susanne Stemmer, Georg A. Sawatzky, Maurits W. Haverkort, Bernhard Keimer, and Vladimir Hinkov. Advanced Materials, August 8, 2014, DOI: 10.1002/adma.201402028


Prof. Dr. Vladimir Hinkov, Department of Experimental Physics IV, University of Würzburg, T +49 (0)931 31-84481,

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Further information:

More articles from Physics and Astronomy:

nachricht New method will enable most accurate neutron measurement yet
02.10.2015 | Paul Scherrer Institut (PSI)

nachricht An easier way to operate and program multitasking machines
30.09.2015 | Siemens AG

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Sinumerik features improve productivity and precision

EMO 2015, Hall 3, Booth E06/F03

  • Drive optimization called automatically by the part program boosts productivity
  • Automatically switching the dynamic values to rapid traverse and interpolation...

Im Focus: LZH presents additive manufacturing at the LABVOLUTION

The Laser Zentrum Hannover e.V. (LZH) will present how laser-based technologies can contribute to the laboratory of the future at the LABVOLUTION in Hannover in Hall 9, Stand E67/09, from October 6th to 8th, 2015. As a part of the model lab smartLAB, the LZH is showing how additive manufacturing, better known as 3-D printing, can make experimental setups more flexible.

Twelve partners from science and industry are presenting an intelligent and innovative model lab at the special display smartLAB. A part of this intelligent...

Im Focus: New polymer creates safer fuels

Before embarking on a transcontinental journey, jet airplanes fill up with tens of thousands of gallons of fuel. In the event of a crash, such large quantities of fuel increase the severity of an explosion upon impact.

Researchers at Caltech and JPL have discovered a polymeric fuel additive that can reduce the intensity of postimpact explosions that occur during accidents and...

Im Focus: 3-D printing techniques help surgeons carve new ears

When surgical residents need to practice a complicated procedure to fashion a new ear for children without one, they typically get a bar of soap, carrot or an apple.

To treat children with a missing or under-developed ear, experienced surgeons harvest pieces of rib cartilage from the child and carve them into the framework...

Im Focus: Walk the line

NASA studies physical performance after spaceflight

Walking an obstacle course on Earth is relatively easy. Walking an obstacle course on Earth after being in space for six months is not quite as simple. The...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Infrared thermography can detect joint inflammation and help improving work ergonomics

02.10.2015 | Medical Engineering

Semiconductor nanoparticles show high luminescence in a polymer matrix

02.10.2015 | Materials Sciences

New Sinumerik features improve productivity and precision

02.10.2015 | Trade Fair News

More VideoLinks >>>