Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New 'T-ray' tech converts light to sound for weapons detection, medical imaging

20.05.2014

A device that essentially listens for light waves could help open up the last frontier of the electromagnetic spectrum—the terahertz range.

So-called T-rays, which are light waves too long for human eyes to see, could help airport security guards find chemical and other weapons. They might let doctors image body tissues with less damage to healthy areas. And they could give astronomers new tools to study planets in other solar systems. Those are just a few possible applications.

But because terahertz frequencies fall between the capabilities of the specialized tools presently used to detect light, engineers have yet to efficiently harness them. The U-M researchers demonstrated a unique terahertz detector and imaging system that could bridge this terahertz gap.

"We convert the T-ray light into sound," said Jay Guo, U-M professor of electrical engineering and computer science, mechanical engineering, and macromolecular science and engineering. "Our detector is sensitive, compact and works at room temperature, and we've made it using an unconventional approach."

The sound the detector makes is too high for human ears to hear.

The terahertz gap is a sliver between the microwave and infrared bands of the electromagnetic spectrum—the range of light's wavelengths and frequencies. That spectrum spans from the longest, low-energy radio waves that can carry songs to our receivers to the shortest, high-energy gamma rays that are released when nuclear bombs explode and radioactive atoms decay.

In between are the microwave frequencies that can cook food or transport cell phone signals, the infrared that enables heat vision technologies, the visible wavelengths that light and color our world, and X-rays that give doctors a window under our skin.

The terahertz band is "scientifically rich," according to Guo and colleagues. But today's detectors either are bulky, need to be kept cold to work or can't operate in real time. That limits their usefulness for applications like weapons and chemical detection and medical imaging and diagnosis, Guo says.

Guo and colleagues invented a special transducer that makes the light-to-sound conversion possible. A transducer turns one form of energy into another. In this case it turns terahertz light into ultrasound waves and then transmits them.

The transducer is made of a mixture of a spongy plastic called polydimethylsiloxane, or PDMS, and carbon nanotubes. Here's how it works:

When the terahertz light hits the transducer, the nanotubes absorb it, turning it into heat. They pass that heat on to the PDMS. The heated PDMS expands, creating an outgoing pressure wave. That's the ultrasound wave. It's more than 1,000 times too high for human ears to pick up.

"There are many ways to detect ultrasound," Guo said. "We transformed a difficult problem into a problem that's already been solved."

Though ultrasound detectors exist—including those used in medical imaging—the researchers made their own sensitive one in the form of a microscopic plastic ring known as a microring resonator. The structure measures only a few millimeters in size.

They connected their system to a computer and demonstrated that they could use it to scan and produce an image of aluminum cross.

The response speed of the new detector is a fraction of a millionth of a second, which Guo says can enable real-time terahertz imaging in many areas.

The system is different from other heat-based terahertz detection systems because it responds to the energy of individual terahertz light pulses, rather than a continuous stream of T-rays. Because of this, it isn't sensitive to variations in the outside temperature, Guo says.

###

The study, "Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite," is published online in Nature Photonics. The research is funded by the National Science Foundation and the Air Force Office of Scientific Research.

Jay Guo: http://www.guogroup.org

Nicole Casal Moore | Eurek Alert!
Further information:
http://www.umich.edu

Further reports about: PDMS T-ray T-rays detector detectors frequencies hear plastic sensitive temperature wavelengths waves

More articles from Physics and Astronomy:

nachricht Astronomers discover dizzying spin of the Milky Way galaxy's 'halo'
26.07.2016 | NASA/Goddard Space Flight Center

nachricht Lonely Atoms, Happily Reunited
26.07.2016 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

New movie screen allows for glasses-free 3-D

26.07.2016 | Information Technology

Scientists develop painless and inexpensive microneedle system to monitor drugs

26.07.2016 | Health and Medicine

Astronomers discover dizzying spin of the Milky Way galaxy's 'halo'

26.07.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>