Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New 'T-ray' tech converts light to sound for weapons detection, medical imaging

20.05.2014

A device that essentially listens for light waves could help open up the last frontier of the electromagnetic spectrum—the terahertz range.

So-called T-rays, which are light waves too long for human eyes to see, could help airport security guards find chemical and other weapons. They might let doctors image body tissues with less damage to healthy areas. And they could give astronomers new tools to study planets in other solar systems. Those are just a few possible applications.

But because terahertz frequencies fall between the capabilities of the specialized tools presently used to detect light, engineers have yet to efficiently harness them. The U-M researchers demonstrated a unique terahertz detector and imaging system that could bridge this terahertz gap.

"We convert the T-ray light into sound," said Jay Guo, U-M professor of electrical engineering and computer science, mechanical engineering, and macromolecular science and engineering. "Our detector is sensitive, compact and works at room temperature, and we've made it using an unconventional approach."

The sound the detector makes is too high for human ears to hear.

The terahertz gap is a sliver between the microwave and infrared bands of the electromagnetic spectrum—the range of light's wavelengths and frequencies. That spectrum spans from the longest, low-energy radio waves that can carry songs to our receivers to the shortest, high-energy gamma rays that are released when nuclear bombs explode and radioactive atoms decay.

In between are the microwave frequencies that can cook food or transport cell phone signals, the infrared that enables heat vision technologies, the visible wavelengths that light and color our world, and X-rays that give doctors a window under our skin.

The terahertz band is "scientifically rich," according to Guo and colleagues. But today's detectors either are bulky, need to be kept cold to work or can't operate in real time. That limits their usefulness for applications like weapons and chemical detection and medical imaging and diagnosis, Guo says.

Guo and colleagues invented a special transducer that makes the light-to-sound conversion possible. A transducer turns one form of energy into another. In this case it turns terahertz light into ultrasound waves and then transmits them.

The transducer is made of a mixture of a spongy plastic called polydimethylsiloxane, or PDMS, and carbon nanotubes. Here's how it works:

When the terahertz light hits the transducer, the nanotubes absorb it, turning it into heat. They pass that heat on to the PDMS. The heated PDMS expands, creating an outgoing pressure wave. That's the ultrasound wave. It's more than 1,000 times too high for human ears to pick up.

"There are many ways to detect ultrasound," Guo said. "We transformed a difficult problem into a problem that's already been solved."

Though ultrasound detectors exist—including those used in medical imaging—the researchers made their own sensitive one in the form of a microscopic plastic ring known as a microring resonator. The structure measures only a few millimeters in size.

They connected their system to a computer and demonstrated that they could use it to scan and produce an image of aluminum cross.

The response speed of the new detector is a fraction of a millionth of a second, which Guo says can enable real-time terahertz imaging in many areas.

The system is different from other heat-based terahertz detection systems because it responds to the energy of individual terahertz light pulses, rather than a continuous stream of T-rays. Because of this, it isn't sensitive to variations in the outside temperature, Guo says.

###

The study, "Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite," is published online in Nature Photonics. The research is funded by the National Science Foundation and the Air Force Office of Scientific Research.

Jay Guo: http://www.guogroup.org

Nicole Casal Moore | Eurek Alert!
Further information:
http://www.umich.edu

Further reports about: PDMS T-ray T-rays detector detectors frequencies hear plastic sensitive temperature wavelengths waves

More articles from Physics and Astronomy:

nachricht A blueprint for clearing the skies of space debris
17.04.2015 | RIKEN

nachricht Quantum Physics – Hot and Cold at the Same Time
17.04.2015 | Ruprecht-Karls-Universität Heidelberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Astronomers reveal supermassive black hole's intense magnetic field

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a supermassive black hole in a distant galaxy

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a...

Im Focus: A “pin ball machine” for atoms and photons

A team of physicists from MPQ, Caltech, and ICFO proposes the combination of nano-photonics with ultracold atoms for simulating quantum many-body systems and creating new states of matter.

Ultracold atoms in the so-called optical lattices, that are generated by crosswise superposition of laser beams, have been proven to be one of the most...

Im Focus: UV light robot to clean hospital rooms could help stop spread of 'superbugs'

Can a robot clean a hospital room just as well as a person?

According to new research out of the Texas A&M Health Science Center College of Medicine, that is indeed the case. Chetan Jinadatha, M.D., M.P.H., assistant...

Im Focus: Graphene pushes the speed limit of light-to-electricity conversion

Researchers from ICFO, MIT and UC Riverside have been able to develop a graphene-based photodetector capable of converting absorbed light into an electrical voltage at ultrafast timescales

The efficient conversion of light into electricity plays a crucial role in many technologies, ranging from cameras to solar cells.

Im Focus: Study shows novel pattern of electrical charge movement through DNA

Electrical charges not only move through wires, they also travel along lengths of DNA, the molecule of life. The property is known as charge transport.

In a new study appearing in the journal Nature Chemistry, authors, Limin Xiang, Julio Palma, Christopher Bruot and others at Arizona State University's...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

 
Latest News

Engineer Improves Rechargeable Batteries with MoS2 Nano 'Sandwich'

17.04.2015 | Power and Electrical Engineering

Comparing Climate Models to Real World Shows Differences in Precipitation Intensity

17.04.2015 | Earth Sciences

A blueprint for clearing the skies of space debris

17.04.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>