Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Study Favors Quantum Mind

22.09.2014

Quantum coherence in brain protein resembles plant photosynthesis

Are the mysteries of quantum physics and consciousness related?


Top: A microtubule, polymer of ‘tubulin’ proteins inside neurons. Bottom: Tubulin with 8 tryptophan chromophores (blue). Red lines and numbers between tryptophans indicate dipole coupling strengths in cm-1

(image courtesy of: Travis J.A. Craddock)

A fierce debate has raged for decades over whether quantum coherence can occur in the brain to support the conscious mind. In the mid 1990s British physicist Sir Roger Penrose and American anesthesiologist Stuart Hameroff proposed that consciousness depends on quantum computations in microtubules inside brain neurons.

The proposal has been viewed skeptically, and harshly over the years, as technological quantum computers require isolation and extreme cold to avoid ‘decoherence’ by thermal vibrations. The conventional wisdom has considered the brain far too “warm, wet and noisy” for seemingly delicate quantum functions.

But nature is resourceful. Photosynthesis, the ubiquitous and essential mechanism by which plants produce food from sunlight, has been shown since 2006 to routinely utilize quantum coherence at warm temperatures. Photons from the sun are absorbed within plant cells, the collected energy then transported through a protein to another region for chemical energy and food.

It turns out that the collected photon energy is first converted to electronic excitations in distinct intra-protein ‘chromophores’, each an array of ‘pi’ electron resonance clouds, and then transported as electronic excitations (‘excitons’), dipole couplings or ‘resonance energy transfers’ which ‘hop’, or spread through the protein, not just from one chromophore to another, but among all chromophores at the same time in quantum coherent superposition! Heat in the form of thermal vibrations pumps, rather than disrupts, quantum coherence, the end result being highly efficient conversion of sunlight to food, extremely important to life on earth.

Back in the brain, microtubules are components of the cytoskeleton inside neurons, cylindrical lattice polymers of the protein ‘tubulin’. Microtubules are theorized to encode memory, regulate synapses and act as quantum computers generating consciousness. The latter claim has been criticized, but now it appears quantum mechanisms eerily similar to those in photosynthesis may operate in tubulins within microtubules.

In an article published September 17 by the Journal of the Royal Society – Interface a team of scientists from Nova Southeastern University and the University of Arizona in the US, and the University of Alberta in Canada used computer simulation and theoretical quantum biophysics to analyze quantum coherence among tryptophan pi resonance rings in tubulin, the component protein in microtubules.

Professor Travis Craddock of Nova Southeastern University and colleagues mapped locations of the tryptophan pi electron resonance clouds in tubulin, and found them analogous to chromophores in photosynthesis proteins.

Eight tryptophans per tubulin are spatially arrayed nanometers apart, geometrically similar to the 7 chromophores in photosynthetic proteins. Calculations showed plausible quantum dipole coupling among tryptophan pi resonance clouds, mediated by exciton hopping or Forster resonance energy transfer (FRET) across the tubulin protein. Quantum coherence was enhanced by mechanical vibrational resonance, also similar to photosynthesis proteins.

Craddock’s team also found that resonance transfer between tryptophans in adjacent tubulins is plausible, e.g. along the microtubule length. This implies the likelihood of quantum coherent states extending through mesoscopic and macroscopic lengths in microtubules.

Along with recent evidence for coherent megahertz vibrations in microtubules, and that anesthetics act to erase consciousness via microtubules, quantum brain biology will become increasingly important.

Professor Jack Tuszynski of the University of Alberta, senior author on the study, “If a potato or rutabaga can utilize quantum coherence, it's likely our brains could have figured it out as well.”

Journal Reference

Travis John Adrian Craddock, Douglas Friesen, Jonathan Mane, Stuart Hameroff, and Jack A. Tuszynski. The feasibility of coherent energy transfer in microtubules. J. R. Soc. Interface, 2014; 11(100): 20140677; DOI:10.1098/rsif.2014.0677 1742-5662

Travis John Adrian Craddock | newswise

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>