Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New results from world's most sensitive dark matter detector

14.12.2015

Berkeley Lab scientists participate in mile-deep experiment in former South Dakota gold mine

The Large Underground Xenon (LUX) dark matter experiment, which operates nearly a mile underground at the Sanford Underground Research Facility (SURF) in the Black Hills of South Dakota, has already proven itself to be the most sensitive detector in the hunt for dark matter, the unseen stuff believed to account for most of the matter in the universe. Now, a new set of calibration techniques employed by LUX scientists has again dramatically improved the detector's sensitivity.


This is a view inside the LUX detector.

Photo by Matthew Kapust/Sanford Underground Research Facility

Researchers with LUX are looking for WIMPs, or weakly interacting massive particles, which are among the leading candidates for dark matter. "We have improved the sensitivity of LUX by more than a factor of 20 for low-mass dark matter particles, significantly enhancing our ability to look for WIMPs," said Rick Gaitskell, professor of physics at Brown University and co-spokesperson for the LUX experiment. "It is vital that we continue to push the capabilities of our detector in the search for the elusive dark matter particles," Gaitskell said.

LUX improvements, coupled to advanced computer simulations at the U.S. Department of Energy's Lawrence Berkeley National Laboratory's (Berkeley Lab) National Energy Research Scientific Computing Center (NERSC) and Brown University's Center for Computation and Visualization (CCV), have allowed scientists to test additional particle models of dark matter that now can be excluded from the search. NERSC also stores large volumes of LUX data--measured in trillions of bytes, or terabytes--and Berkeley Lab has a growing role in the LUX collaboration.

Scientists are confident that dark matter exists because the effects of its gravity can be seen in the rotation of galaxies and in the way light bends as it travels through the universe. Because WIMPs are thought to interact with other matter only on very rare occasions, they have yet to be detected directly.

"We have looked for dark matter particles during the experiment's first three-month run, but are exploiting new calibration techniques better pinning down how they would appear to our detector," said Alastair Currie of Imperial College London, a LUX researcher. "These calibrations have deepened our understanding of the response of xenon to dark matter, and to backgrounds. This allows us to search, with improved confidence, for particles that we hadn't previously known would be visible to LUX."

The new research is described in a paper submitted to Physical Review Letters. The work reexamines data collected during LUX's first three-month run in 2013 and helps to rule out the possibility of dark matter detections at low-mass ranges where other experiments had previously reported potential detections.

LUX consists of one-third ton of liquid xenon surrounded with sensitive light detectors. It is designed to identify the very rare occasions when a dark matter particle collides with a xenon atom inside the detector. When a collision happens, a xenon atom will recoil and emit a tiny flash of light, which is detected by LUX's light sensors. The detector's location at Sanford Lab beneath a mile of rock helps to shield it from cosmic rays and other radiation that would interfere with a dark matter signal.

So far LUX hasn't detected a dark matter signal, but its exquisite sensitivity has allowed scientists to all but rule out vast mass ranges where dark matter particles might exist. These new calibrations increase that sensitivity even further.

One calibration technique used neutrons as stand-ins for dark matter particles. Bouncing neutrons off the xenon atoms allows scientists to quantify how the LUX detector responds to the recoiling process.

"It is like a giant game of pool with a neutron as the cue ball and the xenon atoms as the stripes and solids," Gaitskell said. "We can track the neutron to deduce the details of the xenon recoil, and calibrate the response of LUX better than anything previously possible."

The nature of the interaction between neutrons and xenon atoms is thought to be very similar to the interaction between dark matter and xenon. "It's just that dark matter particles interact very much more weakly--about a million-million-million-million times more weakly," Gaitskell said.

The neutron experiments help to calibrate the detector for interactions with the xenon nucleus. But LUX scientists have also calibrated the detector's response to the deposition of small amounts of energy by struck atomic electrons. That's done by injecting tritiated methane--a radioactive gas--into the detector.

"In a typical science run, most of what LUX sees are background electron recoil events," said Carter Hall a University of Maryland professor. "Tritiated methane is a convenient source of similar events, and we've now studied hundreds of thousands of its decays in LUX. This gives us confidence that we won't mistake these garden-variety events for dark matter."

Another radioactive gas, krypton, was injected to help scientists distinguish between signals produced by ambient radioactivity and a potential dark matter signal.

"The krypton mixes uniformly in the liquid xenon and emits radiation with a known, specific energy, but then quickly decays away to a stable, non-radioactive form," said Dan McKinsey, a UC Berkeley physics professor and co-spokesperson for LUX who is also an affiliate with Berkeley Lab. By precisely measuring the light and charge produced by this interaction, researchers can effectively filter out background events from their search.

"And so the search continues," McKinsey said. "LUX is once again in dark matter detection mode at Sanford Lab. The latest run began in late 2014 and is expected to continue until June 2016. This run will represent an increase in exposure of more than four times compared to our previous 2013 run. We will be very excited to see if any dark matter particles have shown themselves in the new data."

McKinsey, formerly at Yale University, joined UC Berkeley and Berkeley Lab in July, accompanied by members of his research team.

The Sanford Lab is a South Dakota-owned facility. Homestake Mining Co. donated its gold mine in Lead to the South Dakota Science and Technology Authority (SDSTA), which reopened the facility in 2007 with $40 million in funding from the South Dakota State Legislature and a $70 million donation from philanthropist T. Denny Sanford. The U.S. Department of Energy (DOE) supports Sanford Lab's operations.

Kevin Lesko, who oversees SURF operations and leads the Dark Matter Research Group at Berkeley Lab, said, "It's good to see that the experiments installed in SURF continue to produce world-leading results."

The LUX scientific collaboration, which is supported by the DOE and National Science Foundation (NSF), includes 19 research universities and national laboratories in the United States, the United Kingdom and Portugal.

"The global search for dark matter aims to answer one of the biggest questions about the makeup of our universe. We're proud to support the LUX collaboration and congratulate them on achieving an even greater level of sensitivity," said Mike Headley, Executive Director of the SDSTA.

Planning for the next-generation dark matter experiment at Sanford Lab is already under way. In late 2016 LUX will be decommissioned to make way for a new, much larger xenon detector, known as the LUX-ZEPLIN (LZ) experiment. LZ would have a 10-ton liquid xenon target, which will fit inside the same 72,000-gallon tank of pure water used by LUX. Berkeley Lab scientists will have major leadership roles in the LZ collaboration.

"The innovations of the LUX experiment form the foundation for the LZ experiment, which is planned to achieve over 100 times the sensitivity of LUX. The LZ experiment is so sensitive that it should begin to detect a type of neutrino originating in the Sun that even Ray Davis' Nobel Prize-winning experiment at the Homestake mine was unable to detect," according to Harry Nelson of UC Santa Barbara, spokesperson for LZ.

###

LUX is supported by the DOE Office of Science. NERSC is a DOE Office of Science User Facility.

Additional Information

For information about previous LUX results, see http://newscenter.lbl.gov/2013/10/30/lux-first-results/.

A version of this release and additional materials are available on the Sanford Lab site at http://sanfordlab.org/news/press-releases.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit the Office of Science website at science.energy.gov.

The Sanford Underground Research Facility's mission is to enable compelling underground, interdisciplinary research in a safe work environment and to inspire our next generation through science, technology, engineering, and math education. For more, visit SanfordLab.org.

Media Contact

Glenn Roberts
geroberts@lbl.gov
510-486-5582

 @BerkeleyLab

http://www.lbl.gov 

Glenn Roberts | EurekAlert!

Further reports about: Laboratory NERSC dark dark matter matter neutrons sensitivity xenon

More articles from Physics and Astronomy:

nachricht New thruster design increases efficiency for future spaceflight
16.08.2017 | American Institute of Physics

nachricht Tracking a solar eruption through the solar system
16.08.2017 | American Geophysical Union

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>