Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Quantum States for Better Quantum Memories

23.11.2016

How can quantum information be stored as long as possible? An important step forward in the development of quantum memories has been achieved by a research team of TU Wien.

Conventional memories used in today’s computers only differentiate between the bit values 0 and 1. In quantum physics, however, arbitrary superpositions of these two states are possible. Most of the ideas for new quantum technology devices rely on this “Superposition Principle”. One of the main challenges in using such states is that they are usually short-lived. Only for a short period of time can information be read out of quantum memories reliably, after that it is irrecoverable.


An artificial diamond under the optical microscope. The diamond fluoresces because due to a number of nitrogen defects

TU Wien


Measurement equipment for the production of durable quantum states. To avoid the influence of thermic noise, the setup is cooled to 20 milli degree (-273.13° Celsius) above the absolute zero point.

TU Wien

A research team at TU Wien has now taken an important step forward in the development of new quantum storage concepts. In cooperation with the Japanese telecommunication giant NTT, the Viennese researchers lead by Johannes Majer are working on quantum memories based on nitrogen atoms and microwaves.

The nitrogen atoms have slightly different properties, which quickly leads to the loss of the quantum state. By specifically changing a small portion of the atoms, one can bring the remaining atoms into a new quantum state, with a lifetime enhancement of more than a factor of ten. These results have now been published in the journal "Nature Photonics".

Nitrogen in diamond

"We use synthetic diamonds in which individual nitrogen atoms are implanted", explains project leader Johannes Majer from the Institute of Atomic and Subatomic Physics of TU Wien. "The quantum state of these nitrogen atoms is coupled with microwaves, resulting in a quantum system in which we store and read information."

However, the storage time in these systems is limited due to the inhomogeneous broadening of the microwave transition in the nitrogen atoms of the diamond crystal. After about half a microsecond, the quantum state can no longer be reliably read out, the actual signal is lost. Johannes Majer and his team used a concept known as “spectral hole burning”, allowing data to be stored in the optical range of inhomogeneously broadened media, and adapted it for supra-conducting quantum circuits and spin quantum memories.

Dmitry Krimer, Benedikt Hartl and Stefan Rotter (Institute of Theoretical Physics, TU Wien) have shown in their theoretical work that such states, which are largely decoupled from the disturbing noise, also exist in these systems. “The trick is to manoeuver the quantum system into these durable states through specific manipulation, with the aim to store information there,” explains Dmitry Krimer.

Excluding specific energies

"The transitions areas in the nitrogen atoms have slightly different energy levels because of the local properties of the not quite perfect diamond crystal”, explains Stefan Putz, the first author of the study, who has since moved from TU Wien to Princeton University. "If you use microwaves to selectively change a few nitrogen atoms that have very specific energies, you can create a “Spectral Hole”.

The remaining nitrogen atoms can then be brought into a new quantum state, a so-called “dark state”, in the center of these holes. This state is much more stable and opens up completely new possibilities.”
"Our work is a 'proof of principle' – we present a new concept, show that it works, and we want to lay the foundations for further exploration of innovative operational protocols of quantum data," says Stefan Putz.

With this new method, the lifetime of quantum states of the coupled system of microwaves and nitrogen atoms increased by more than one order of magnitude to about five microseconds. This is still not a great deal in the standard of everyday life, but in this case it is sufficient for important quantum-technological applications. "The advantage of our system is that one can write and read quantum information within nanoseconds," explains Johannes Majer. "A large number of working steps are therefore possible in microseconds, in which the system remains stable."

Originalpublikationen: Spectral hole burning and its application in microwave photonics
Nature Photonics: PUBLISHED ONLINE: 21 NOVEMBER 2016 | DOI: 10.1038/NPHOTON.2016.225
http://www.nature.com/nphoton/journal/vaop/ncurrent/full/nphoton.2016.225.html

Hybrid quantum systems with collectively coupled spin states: suppression of decoherence through spectral hole burning, Phys. Rev. Lett. 115, 033601 (2015) | DOI: 10.1103/PhysRevLett.115.033601
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.033601

Weitere Informationen:

http://www.tuwien.ac.at/en/news/news_detail/article/124550/

Dr. Florian Aigner | Technische Universität Wien

More articles from Physics and Astronomy:

nachricht Magnetic field traces gas and dust swirling around supermassive black hole
22.02.2018 | Royal Astronomical Society

nachricht UMass Amherst physicists contribute to dark matter detector success
22.02.2018 | University of Massachusetts at Amherst

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>