Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Paths into the World of Quasiparticles

10.07.2014

Quasiparticles can be used to explain physical phenomena in solid bodies even though they are not actual physical particles.

Physicists in Innsbruck have now realized quasiparticles in a quantum system and observed quantum mechanical entanglement propagation in a many-body system. The researchers have published their work in Nature.


The quasiparticles disperse to both sides of the excitation site on the ion-string, thereby, transporting quantum correlations. IQOQI

Christian Roos’ research team at the Institute for Quantum Optics and Quantum Information at the Austrian Academy of Sciences in Innsbruck has established a new experimental platform for investigating quantum phenomena: In a string of trapped ultracold ions they can precisely initialise, control and measure the states and properties of quasiparticle excitations in a many-body quantum system.

“Quasiparticles are a well-established concept in physics to describe the collective behaviour of particles in a simplified way,” says Christian Roos.

Entanglement propagation

For the experiment the physicists used a one-dimensional ion-string consisting of between seven and fifteen calcium ions trapped in a vacuum chamber. Laser beams then manipulate the quantum state of the ions. “Each particle behaves like a little quantum magnet interacting with each other,” explains Petar Jurcevic, first author of this study. “The precise excitation of one of the particles also affects the other particles. The resulting collective behaviour of the system is called quasiparticles.”

These quasiparticles disperse to both sides of the excitation site on the ion-string, thereby, transporting quantum correlations. Excitation distribution has previously been observed in experiments with neutral atoms, where correlations between particles have also been shown.

“In our experiments we have been able to determine that these correlations are quantum correlations,” says Roos. “By measuring multi-particle correlations we have been able to detect and quantify quantum entanglement.” The physicists were, thus, the first to show entanglement propagation in a quantum system. 

In contrast to previous experiments, the researchers in Innsbruck can tune the ion-ion interaction range in the system from effectively nearest-neighbour to infinite range. In each case, a new set of quasiparticles is created with unique dynamical properties.

New research with quasiparticles

“With this new scheme we can precisely manipulate the quasiparticles,” says an excited Philipp Hauke, one of the authors of this study. “It has taken us decades to come up with ways to precisely control and manipulate quantum particles. With this platform we can now do the same with quasiparticles and investigate phenomena that we haven’t been able to study experimentally.”

For example, it opens up new paths to study how quantum systems reach equilibrium, including the question of when thermalisation occurs, a process that so far has remained elusive. “Another big goal is to utilize quasiparticles for quantum information processing,” says Hauke.

In addition, this platform could also be used to study the role of transport processes in biological systems. At the moment Christian Roos’ research team is working on the idea to investigate interaction processes between two quasiparticles.

The study, now published in Nature, was jointly conducted by Peter Zoller’s theoretical research group and Rainer Blatt’s experimental research team at the Institute for Quantum Optics and Quantum Information at the Austrian Academy of Sciences and the University of Innsbruck. The researchers are funded by the Austrian Science Fund, the European Commission, the European Research Council and the Federation of Austrian Industries Tyrol.

Publication: Quasiparticle engineering and entanglement propagation in a quantum many-body system. P. Jurcevic, B. P. Lanyon, P. Hauke, C. Hempel, P. Zoller, R. Blatt, and C. F. Roos. Nature 2014 DOI: 10.1038/nature13461

Contact:
Christian Roos
Institute for Quantum Optics and Quantum Information
Austrian Academy of Sciences
Phone: +43 512 507 4728
Email: christian.roos@uibk.ac.at

Christian Flatz
Public Relations
Phone: +43 512 507 32022
Mobile: +43 676 872532022
Email: christian.flatz@uibk.ac.at

Weitere Informationen:

http://quantumoptics.at - Quantum Optics and Spectroscopy Group

Dr. Christian Flatz | Universität Innsbruck

Further reports about: Quantum Quasiparticles ions manipulate phenomena processes propagation

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>