Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New models give insight into the heart of the Rosette Nebula

13.02.2018

A hole at the heart of a stunning rose-like interstellar cloud has puzzled astronomers for decades. But new research, led by the University of Leeds, offers an explanation for the discrepancy between the size and age of the Rosetta Nebula's central cavity and that of its central stars.

The Rosette Nebula is located in the Milky Way Galaxy roughly 5,000 light-years from Earth and is known for its rose-like shape and distinctive hole at its centre. The nebula is an interstellar cloud of dust, hydrogen, helium and other ionized gases with several massive stars found in a cluster at its heart.


Rosette Nebula image is based on data obtained as part of the INT Photometric H-Alpha Survey of the Northern Galactic Plane, prepared by Nick Wright, Keele University, on behalf of the IPHAS Collaboration

Credit: Nick Wright, Keele University


This is a 3-D visualization of the simulated nebula, showing the dense disc-like molecular cloud in red, the tenuous stellar wind focused away from the disc in blue and the magnetic field lines in grey. The magnetic field is of key importance in forming a disc-like, not spherical, molecular cloud.

Credit: C. J. Wareing et al., 2018, MNRAS

Stellar winds and ionising radiation from these massive stars affect the shape of the giant molecular cloud. But the size and age of the cavity observed in the centre of Rosette Nebula is too small when compared to the age of its central stars.

Through computer simulations, astronomers at Leeds and at Keele University have found the formation of the Nebula is likely to be in a thin sheet-like molecular cloud rather than in a spherical or thick disc-like shape, as some photographs may suggest. A thin disc-like structure of the cloud focusing the stellar winds away from the cloud's centre would account for the comparatively small size of the central cavity.

Study lead author, Dr Christopher Wareing, from the School of Physics and Astronomy said: "The massive stars that make up the Rosette Nebula's central cluster are a few millions of years old and halfway through their lifecycle. For the length of time their stellar winds would have been flowing, you would expect a central cavity up to ten times bigger.

"We simulated the stellar wind feedback and formation of the nebula in various molecular cloud models including a clumpy sphere, a thick filamentary disc and a thin disc, all created from the same low density initial atomic cloud.

"It was the thin disc that reproduced the physical appearance - cavity size, shape and magnetic field alignment -- of the Nebula, at an age compatible with the central stars and their wind strengths.

"To have a model that so accurately reproduces the physical appearance in line with the observational data, without setting out to do this, is rather extraordinary.

"We were also fortunate to be able to apply data to our models from the ongoing Gaia survey, as a number of the bright stars in the Rosette Nebula are part of the survey.

Applying this data to our models gave us new understanding of the roles individual stars play in the Rosette Nebula. Next we'll look at the many other similar objects in our Galaxy and see if we can figure out their shape as well."

The simulations, published today in the Monthly Notices of the Royal Astronomical Society, were run using the Advanced Research Computing centre at Leeds. The nine simulations required roughly half a million CPU hours -- the equivalent to 57 years on a standard desktop computer.

Martin Callaghan, a member of the Advanced Research Computing team, said: "The fact that the Rosette Nebula simulations would have taken more than five decades to complete on a standard desktop computer is one of the key reasons we provide powerful supercomputing research tools. These tools enabled the simulations of the Rosette Nebula to be done in a matter of a few weeks."

###

Further information

Download images and captions from: https://goo.gl/5iv798

Rosette Nebula image is based on data obtained as part of the INT Photometric H-Alpha Survey of the Northern Galactic Plane, prepared by Nick Wright, Keele University, on behalf of the IPHAS Collaboration. http://www.astro.keele.ac.uk/~njw/imaging.html

The research paper, A new mechanical stellar wind feedback model for the Rosette Nebula is published in the Monthly Notices of the Royal Astronomical Society 13 February 2018 (DOI: 10.1093/mnras/sty148)

For additional information and to request interviews please contact Anna Harrison, Press Officer at the University of Leeds, on +44 (0)113 34 34196 or a.harrison@leeds.ac.uk

University of Leeds

1The University of Leeds is one of the largest higher education institutions in the UK, with more than 33,000 students from more than 150 different countries, and a member of the Russell Group of research-intensive universities.

We are a top ten university for research and impact power in the UK, according to the 2014 Research Excellence Framework, and are in the top 100 for academic reputation in the QS World University Rankings 2018. Additionally, the University was awarded a Gold rating by the Government's Teaching Excellence Framework in 2017, recognising its 'consistently outstanding' teaching and learning provision. Twenty-six of our academics have been awarded National Teaching Fellowships - more than any other institution in England, Northern Ireland and Wales - reflecting the excellence of our teaching. http://www.leeds.ac.uk

Follow University of Leeds or tag us in to coverage Twitter | Facebook |LinkedIn| Instagram

Keele University

* Keele was recently awarded Gold in the Teaching Excellence Framework

* Keele is ranked No.1 in England for Course Satisfaction (Guardian University Guide 2018)

* 97% of the University's research was deemed to be world-leading, or of international importance, in the latest Research Excellence Framework

http://www.keele.ac.uk

Media Contact

Anna Harrison
a.harrison@leeds.ac.uk
44-011-334-34196

 @universityleeds

http://www.leeds.ac.uk 

Anna Harrison | EurekAlert!

Further reports about: Computing Galaxy massive stars nebula physical appearance stellar wind

More articles from Physics and Astronomy:

nachricht NUS engineers develop novel method for resolving spin texture of topological surface states using transport measurements
26.04.2018 | National University of Singapore

nachricht European particle-accelerator community publishes the first industry compendium
26.04.2018 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>