Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method to detect prize particle for future quantum computing

10.09.2014

Quantum computing relies on the laws of quantum mechanics to process vast amounts of information and calculations simultaneously, with far more power than current computers.

However, development of quantum computers has been limited as researchers have struggled to find a reliable way to increase the power of these systems, a power measured in Q-Bits.

Previous attempts to find the elusive Majorana particle have been very promising but have not yet provided definitive and conclusive evidence of its existence.

Now, researchers from the University of Surrey and the Ben-Gurion University in Israel believe they have uncovered a key method for detection of the Majorana particle, potentially enabling reliable Q-Bits to be developed.

This new research proposes using photons (particles of light) and super-conducting circuits to probe and measure semiconductor nanowires, where it is thought these particles exist at certain controlled conditions. If the particles are present, they will be revealed through a specific pattern with microwave spectroscopy.

Currently the most powerful quantum computer in existence has a power of eight Q-Bits. Once the particle is confirmed, researchers believe it will enable functioning topological Q-Bits to be produced, breaking the barriers on the way to scaling up quantum computation to many Q-Bits.

"We know what we are looking for, we just haven't found it yet - it's the ultimate physics treasure hunt! We are confident that the method we are proposing will bring us closer to unlocking the untapped potential of quantum computing in areas such as code breaking, complicated mathematical problem-solving and scientific simulation of advanced materials" said lead-author Dr Eran Ginossar, the University of Surrey.

The new method has attracted the interest of leading experimental groups and it is hoped that the new method will be trialled within the next year.

Quantum computing is one pillar of quantum technology, an area where the UK is posed to make a large investment. Last year the government announced funding of £270million for the development and application of this technology.

Amy Sutton | Eurek Alert!
Further information:
http://www.surrey.ac.uk

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>