Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New mass map of a distant galaxy cluster is the most precise yet

25.07.2014

Stunning new observations from Frontier Fields

Astronomers using the NASA/ESA Hubble Space Telescope have mapped the mass within a galaxy cluster more precisely than ever before. Created using observations from Hubble's Frontier Fields observing programme, the map shows the amount and distribution of mass within MCS J0416.1–2403, a massive galaxy cluster found to be 160 trillion times the mass of the Sun.


Colour image of galaxy cluster MCS J0416.1–2403

The detail in this mass map was made possible thanks to the unprecedented depth of data provided by new Hubble observations, and the cosmic phenomenon known as strong gravitational lensing.

Measuring the amount and distribution of mass within distant objects in the Universe can be very difficult. A trick often used by astronomers is to explore the contents of large clusters of galaxies by studying the gravitational effects they have on the light from very distant objects beyond them.

This is one of the main goals of Hubble's Frontier Fields, an ambitious observing programme scanning six different galaxy clusters — including MCS J0416.1–2403, the cluster shown in this stunning new image [1].

Large clumps of mass in the Universe warp and distort the space-time around them. Acting like lenses, they appear to magnify and bend light that travels through them from more distant objects [2].

Despite their large masses, the effect of galaxy clusters on their surroundings is usually quite minimal. For the most part they cause what is known as weak lensing, making even more distant sources appear as only slightly more elliptical or smeared across the sky.

However, when the cluster is large and dense enough and the alignment of cluster and distant object is just right, the effects can be more dramatic. The images of normal galaxies can be transformed into rings and sweeping arcs of light, even appearing several times within the same image. This effect is known as strong lensing, and it is this phenomenon, seen around the six galaxy clusters targeted by the Frontier Fields programme, that has been used to map the mass distribution of MCS J0416.1–2403, using the new Hubble data.

"The depth of the data lets us see very faint objects and has allowed us to identify more strongly lensed galaxies than ever before," explains Mathilde Jauzac of Durham University, UK, and Astrophysics & Cosmology Research Unit, South Africa, lead author of the new Frontier Fields paper. "Even though strong lensing magnifies the background galaxies they are still very far away and very faint. The depth of these data means that we can identify incredibly distant background galaxies. We now know of more than four times as many strongly lensed galaxies in the cluster than we did before."

Using Hubble's Advanced Camera for Surveys, the astronomers identified 51 new multiply imaged galaxies around the cluster, quadrupling the number found in previous surveys and bringing the grand total of lensed galaxies to 68. Because these galaxies are seen several times this equates to almost 200 individual strongly lensed images which can be seen across the frame. This effect has allowed Jauzac and her colleagues to calculate the distribution of visible and dark matter in the cluster and produce a highly constrained map of its mass [3].

"Although we’ve known how to map the mass of a cluster using strong lensing for more than twenty years, it’s taken a long time to get telescopes that can make sufficiently deep and sharp observations, and for our models to become sophisticated enough for us to map, in such unprecedented detail, a system as complicated as MCS J0416.1–2403," says team member Jean-Paul Kneib.

By studying 57 of the most reliably and clearly lensed galaxies, the astronomers modelled the mass of both normal and dark matter within MCS J0416.1-2403. "Our map is twice as good as any previous models of this cluster!" adds Jauzac.

The total mass within MCS J0416.1-2403 — modelled to be over 650 000 light-years across — was found to be 160 trillion times the mass of the Sun. This measurement is several times more precise than any other cluster map, and is the most precise ever produced [4]. By precisely pinpointing where the mass resides within clusters like this one, the astronomers are also measuring the warping of space-time with high precision.

"Frontier Fields' observations and gravitational lensing techniques have opened up a way to very precisely characterise distant objects — in this case a cluster so far away that its light has taken four and a half billion years to reach us," adds Jean-Paul Kneib. "But, we will not stop here. To get a full picture of the mass we need to include weak lensing measurements too. Whilst it can only give a rough estimate of the inner core mass of a cluster, weak lensing provides valuable information about the mass surrounding the cluster core."

The team will continue to study the cluster using ultra-deep Hubble imaging and detailed strong and weak lensing information to map the outer regions of the cluster as well as its inner core, and will thus be able to detect substructures in the cluster's surroundings. They will also take advantage of X-ray measurements of hot gas and spectroscopic redshifts to map the contents of the cluster, evaluating the respective contribution of dark matter, gas and stars [5].

Combining these sources of data will further enhance the detail of this mass distribution map, showing it in 3D and including the relative velocities of the galaxies within it. This paves the way to understanding the history and evolution of this galaxy cluster.

The results of the study will be published online in Monthly Notices of the Royal Astronomical Society on 24 July 2014.

Notes

[1] The cluster is also known as MACS J0416.1–2403.

[2] The warping of space-time by large objects in the Universe was one of the predictions of Albert Einstein’s theory of general relativity.

[3] Gravitational lensing is one of the few methods astronomers have to find out about dark matter. Dark matter, which makes up around three quarters of all matter in the Universe, cannot be seen directly as it does not emit or reflect any light, and can pass through other matter without friction (it is collisionless). It interacts only by gravity, and its presence must be deduced from its gravitational effects.

[4] The uncertainty on the measurement is only around 0.5%, or 1 trillion times the mass of the sun. This may not seem precise but it is for a measurement such as this.

[5] NASA's Chandra X-ray Observatory was used to obtain X-ray measurements of hot gas in the cluster and ground based observatories provide the data needed to measure spectroscopic redshifts.

Notes for editors

The Hubble Space Telescope is a project of international cooperation between ESA and NASA.

The international team of astronomers in this study consists of M. Jauzac (Durham University, UK and Astrophysics & Cosmology Research Unit, South Africa); B. Clement (University of Arizona, USA); M. Limousin (Laboratoire d’Astrophysique de Marseille, France and University of Copenhagen, Denmark); J. Richard (Université Lyon, France); E. Jullo (Laboratoire d’Astrophysique de Marseille, France); H. Ebeling (University of Hawaii, USA); H. Atek (Ecole Polytechnique Fédérale de Lausanne, Switzerland); J.-P. Kneib (Ecole Polytechnique Fédérale de Lausanne, Switzerland and Laboratoire d’Astrophysique de Marseille, France); K. Knowles (University of KwaZulu-Natal, South Africa); P. Natarajan (Yale University, USA); D. Eckert (University of Geneva, Switzerland); E. Egami (University of Arizona, USA); R. Massey (Durham University, UK); and M. Rexroth (Ecole Polytechnique Fédérale de Lausanne, Switzerland).

More information

Image credit: ESA/Hubble, NASA, HST Frontier Fields
Acknowledgement: Mathilde Jauzac (Durham University, UK and Astrophysics & Cosmology Research Unit, South Africa) and Jean-Paul Kneib (École Polytechnique Fédérale de Lausanne, Switzerland)

Links

Contacts

Mathilde Jauzac
Durham University, Institute for Computational Cosmology
Durham, United Kingdom
Tel: +33 6 52 67 15 39 (France)
Cell: +44 7445 218614 (UK)
Email: mathilde.jauzac@dur.ac.uk

Jean-Paul Kneib
École Polytechnique Fédérale de Lausanne, Observatoire de Sauverny
Versoix, Switzerland
Tel: +41 22 3792473
Cell: +33 695 795 392
Email: jean-paul.kneib@epfl.ch

Eric Jullo
Laboratoire d'Astrophysique de Marseille
Marseille, France
Tel: +33 4 91 05 5951
Email: eric.jullo@lam.fr

Johan Richard
Centre de Recherche Astronomique de Lyon, Observatoire de Lyon
Lyon, France
Tel: +33 478 868 378
Email: johan.richard@univ-lyon1.fr

Georgia Bladon
ESA/Hubble, Public Information Officer
Garching bei München, Germany
Tel: +44 7816291261
Email: gbladon@partner.eso.org

Georgia Bladon | ESA/Hubble Media Newsletter
Further information:
http://www.spacetelescope.org/news/heic1416/

More articles from Physics and Astronomy:

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

nachricht NASA team finds noxious ice cloud on saturn's moon titan
19.10.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>