Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New experiment provides route to macroscopic high-mass superpositions

24.10.2014

University of Southampton scientists have designed a new experiment to test the foundations of quantum mechanics at the large scale.

Standard quantum theory places no limit on particle size and current experiments use larger and larger particles, which exhibit wave-like behaviour. However, at these masses experiments begin to probe extensions to standard quantum mechanics, which describe the apparent quantum-to-classical transition.

Now, Southampton researchers, with colleagues from the University of Duisburg-Essen in Germany, have designed a new type of experiment which will advance the current state-of-the-art experiments by a factor of 100, from 10,000 atomic mass units (amu), roughly equal to the mass of a single proton, to one million amu.

The research is published in Nature Communications.

They propose an interferometer with a levitated, optically cooled, and then free-falling silicon nanoparticle in the mass range of one million amu, delocalised over more than 150 nm. The scheme employs the near-field Talbot effect with a single standing-wave laser pulse as a phase grating.

Individual particles are dropped and diffracted by a standing UV laser wave, such that interference of neighbouring diffraction orders produces a resonant near-field fringe pattern. In order to record the interferogram, the nanospheres are deposited on a glass slide and their arrival positions are recorded via optical microscopy. The researchers argue that the choice of silicon, due to its specific material characteristics, will produce reliable high mass interference, unaffected by environmental decoherence, in a setup that can be produced with current technology.

Dr James Bateman, from Physics and Astronomy at the University of Southampton and co-author of the study, says: "This work is a natural extension of atomic physics, which has revolutionised many technologies. Our analysis, which accounts for all relevant sources of decoherence, indicates that this is a viable route towards macroscopic high-mass superpositions.

"This current work is not technology-driven, but it does ask difficult questions of relevance to future quantum devices. Placing larger and larger mechanical systems into quantum states has implications for what can be done with the technology. We hope that our work will lead to a better understanding of the fundamental physics and hence to more advanced quantum devices."

As time-of-flight, and therefore mass, is limited by the free-fall distance under earth's gravity, a space-based mission is planned by the Macroscopic quantum resonators (MAQRO) consortium with which the researchers are involved; this could bring a further factor of 100 in mass.

Glenn Harris | Eurek Alert!
Further information:
http://www.soton.ac.uk

More articles from Physics and Astronomy:

nachricht Taking a spin on plasma space tornadoes with NASA observations
20.11.2017 | NASA/Goddard Space Flight Center

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>