Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New device could turn heat energy into a viable fuel source

31.08.2017

A new device being developed by Washington State University physicist Yi Gu could one day turn the heat generated by a wide array of electronics into a usable fuel source.

The device is a multicomponent, multilayered composite material called a van der Waals Schottky diode. It converts heat into electricity up to three times more efficiently than silicon -- a semiconductor material widely used in the electronics industry. While still in an early stage of development, the new diode could eventually provide an extra source of power for everything from smartphones to automobiles.


The left panel shows the schematic lattice structures of the alpha-beta In2Se3 van der Waals metal-semiconductor junction, and the right panel shows an optical micrograph of a junction device.

Credit: Yi Gu

"The ability of our diode to convert heat into electricity is very large compared to other bulk materials currently used in electronics," said Gu, an associate professor in WSU's Department of Physics and Astronomy.

"In the future, one layer could be attached to something hot like a car exhaust or a computer motor and another to a surface at room temperature. The diode would then use the heat differential between the two surfaces to create an electric current that could be stored in a battery and used when needed."

Gu recently published a paper on the Schottky diode in The Journal of Physical Chemistry Letters.

A new kind of diode

In the world of electronics, Schottky diodes are used to guide electricity in a specific direction, similar to how a valve in a water main directs the flow of liquid going through it. They are made by attaching a conductor metal like aluminum to a semiconductor material like silicon.

Instead of combining a common metal like aluminum or copper with a conventional semiconductor material like silicon, Gu's diode is made from a multilayer of microscopic, crystalline Indium Selenide. He and a team of graduate students used a simple heating process to modify one layer of the Indium Selenide to act as a metal and another layer to act as a semiconductor.

The researchers then used a new kind of confocal microscope developed by Klar Scientific, a start-up company founded in part by WSU physicist Matthew McCluskey, to study their materials' electronic properties.

Unlike its conventional counterparts, Gu's diode has no impurities or defects at the interface where the metal and semiconductor materials are joined together. The smooth connection between the metal and semiconductor enables electricity to travel through the multilayered device with almost 100 percent efficiency.

"When you attach a metal to a semiconductor material like silicon to form a Schottky diode, there are always some defects that form at the interface," said McCluskey, a co-author of the study. "These imperfections trap electrons, impeding the flow of electricity. Gu's diode is unique in that its surface does not appear to have any of these defects. This lowers resistance to the flow of electricity, making the device much more energy efficient."

Next steps

Gu and his collaborators are currently investigating new methods to increase the efficiency of their Indium Selenide crystals. They are also exploring ways to synthesize larger quantities of the material so that it can be developed into useful devices.

"While still in the preliminary stages, our work represents a big leap forward in the field of thermoelectrics," Gu said. "It could play an important role in realizing a more energy-efficient society in the future."

Media Contact

Yi Gu
yigu@wsu.edu
509-335-7208

 @WSUNews

http://www.wsu.edu 

Yi Gu | EurekAlert!

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>