Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New breed of optical soliton wave discovered

07.09.2016

Applied scientists led by Caltech's Kerry Vahala have discovered a new type of optical soliton wave that travels in the wake of other soliton waves, hitching a ride on and feeding off of the energy of the other wave.

Solitons are localized waves that act like particles: as they travel across space, they hold their shape and form rather than dispersing as other waves do.


Optical microcavities in which the solitons were created

Credit: Qi-Fan Yang/Caltech

They were first discovered in 1834 when Scottish engineer John Scott Russell noted an unusual wave that formed after the sudden stop of a barge in the Union Canal that runs between Falkirk and Edinburgh. Russell tracked the resulting wave for one or two miles, and noted that it preserved its shape as it traveled, until he ultimately lost sight of it.

He dubbed his discovery a "wave of translation." By the end of the century, the phenomenon had been described mathematically, ultimately giving birth to the concept of the soliton wave. Under normal conditions, waves tend to dissipate as they travel through space. Toss a stone into a pond, and the ripples will slowly die down as they spread out away from the point of impact. Solitons, on the other hand, do not.

In addition to water waves, solitons can occur as light waves. Vahala's team studies light solitons by having them recirculate indefinitely in micrometer-scale circular circuits called optical microcavities. Solitons have applications in the creation of highly accurate optical clocks, and can be used in microwave oscillators that are used for navigation and radar systems, among other things.

But despite decades of study, a soliton has never been observed behaving in a dependent -- almost parasitic--manner.

"This new soliton rides along with another soliton -- essentially, in the other soliton's wake. It also syphons energy off of the other soliton so that it is self-sustaining. It can eventually grow larger than its host," says Vahala, Ted and Ginger Jenkins Professor of Information Science and Technology and Applied Physics and executive officer for applied physics and materials science in the Division of Engineering and Applied Science.

Vahala likens these newly discovered solitons to pilot fish, carnivorous tropical fish that swim next to a shark so they can pick up scraps from the shark's meals. And by swimming in the shark's wake, the pilot fish reduce the drag of water on their own body, so they can travel with less effort.

Vahala is the corresponding author of a paper in the journal Nature Physics announcing and describing the new type of soliton, dubbed the "Stokes soliton." (The name "Stokes" was chosen for technical reasons having to do with how the soliton syphons energy from the host.) The new soliton was first observed by Caltech graduate students Qi-Fan Yang and Xu Yi. Because of the soliton's ability to closely match the position and shape of the original soliton, Yang's and Yi's initial reaction to the wave was to suspect that laboratory instrumentation was malfunctioning.

"We confirmed that the signal was not an artifact of the instrumentation by observing the signal on two spectrometers. We then knew it was real and had to figure out why a new soliton would spontaneously appear like this," Yang says.

The microcavities that Vahala and his team use include a laser input that provides the solitons with energy. This energy cannot be directly absorbed by the Stokes soliton -- the "pilot fish." Instead, the energy is consumed by the "shark" soliton. But then, Vahala and his team found, the energy is pulled away by the pilot fish soliton, which grows in size while the other soliton shrinks.

"Once we understood the environment required to sustain the new soliton, it actually became possible to design the microcavities to guarantee their formation and even their properties like wavelength -- effectively, color," Yi says. Yi and Yang collaborated with graduate student Ki Youl Yang on the research.

###

This work is described in a paper titled "Stokes solitons in optical microcavities," published on Sept. 5. The paper can be found online at http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys3875.html. His research was funded by the Defense Advanced Research Projects Agency under the PULSE Program; NASA; the Kavli Nanoscience Institute; and the Institute for Quantum Information and Matter, a National Science Foundation Physics Frontiers Center supported by the Gordon and Betty Moore Foundation.

Media Contact

Robert Perkins
rperkins@caltech.edu
626-395-1862

 @caltech

http://www.caltech.edu 

Robert Perkins | EurekAlert!

More articles from Physics and Astronomy:

nachricht New proton record: Researchers measure magnetic moment with greatest possible precision
24.11.2017 | Johannes Gutenberg-Universität Mainz

nachricht Enhancing the quantum sensing capabilities of diamond
23.11.2017 | The Hebrew University of Jerusalem

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Lightning, with a chance of antimatter

24.11.2017 | Earth Sciences

A huge hydrogen generator at the Earth's core-mantle boundary

24.11.2017 | Earth Sciences

Scientists find why CP El Niño is harder to predict than EP El Niño

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>