Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neutrons uncover new density waves in fermion liquids

29.03.2012
Scientists discover zero-sound oscillations of atomic wavelength in super-chilled helium

Scientists working at the Institut Laue-Langevin, one of the world's leading centres for neutron science, have carried out the first investigation of two-dimensional fermion liquids using neutron scattering, and discovered a new type of very short wave-length density wave. The team believe their discovery, published in Nature, will interest researchers looking at electronic systems, since high temperature superconductivity could result from this type of density fluctuations.

Fermi liquids are composed of strongly interacting fermion particles, a group that includes quarks, electrons, protons and neutrons. They are common in nature, found in atomic nuclei, metals, semiconductors, and neutron stars.

They are also one of two types of quantum liquid used to model and explain the complex interplay between atoms or even sub-atomic particles that is governed by quantum mechanics in a field known as 'many-body physics'.

Fermion particles are defined by their adherence to the Pauli Exclusion Principle that states that no two identical fermions can exist in the same energetic state, making fermion systems particularly complicated. As a result, whilst the other types of quantum liquid, composed of bosons like gluons and photons, are well understood in terms of their underlying physics, fermion liquids remain more mysterious.

As part of this on-going investigation a team of researchers from the Institut Néel (Centre national de la recherche scientifique and Université J. Fourier) in France and Aalto University in Finland (Microkelvin Collaboration), Oak Ridge National Laboratory and SUNY University at Buffalo in the US, Johannes Kepler University in Austria carried out the first direct investigation of these very short wave-length elementary excitations in a fermion liquid by inelastic neutron scattering. In their study, the neutrons were focused on a one atom thick layer of helium-3, a much rarer version of helium on Earth than helium-4 that is used in balloons and airships, which acts like a Fermi liquid at temperatures close to absolute zero.

Using this scattering technique the scientists were able to observe high frequency, very short wave-length density waves known as zero-sound oscillations. The results from the scattering experiments revealed the zero sound modes to be far longer lived in this two-dimensional fluid than those seen during previous experiments at the ILL in bulk liquids, where they were strongly damped.

The discovery of these oscillations in a fermion helium liquid is particularly interesting as it's thought that if this type of high frequency density oscillation is seen in another fermion liquid, composed of electrons, this could be a mechanism for high temperature superconductivity. Once the team have completed their investigation of the properties of the helium system, their next step is to extend this understanding to electron liquids.

Dr. Henri Godfrin, Director of research at CNRS, based at the Institut Néel, a leading laboratory for fundamental research in condensed matter physics:

"People working with electron systems will be very interested to see if this property exists in their own systems and this finding suggests it is entirely possible. This is an important discovery in the field of quantum fluids, which has direct consequences in other areas of many-body physics, particularly in understanding the makeup of metals and the physics behind neutron stars."

Contact
James Romero 44-845-680-1866 / james@proofcommunication.com
Notes to editors

1. About ILL – the Institut Laue-Langevin (ILL) is an international research centre based in Grenoble, France. It has led the world in neutron-scattering science and technology for almost 40 years, since experiments began in 1972. ILL operates one of the most intense neutron sources in the world, feeding beams of neutrons to a suite of 40 high-performance instruments that are constantly upgraded. Each year 1,200 researchers from over 40 countries visit ILL to conduct research into condensed matter physics, chemistry, biology, nuclear physics, and materials science. The UK, along with France and Germany is an associate and major funder of the ILL.

2. The European Microkelvin Collaboration - MICROKELVIN - is an EU-funded Integrating Activity project carried out in the FP7 Capacities Specific Programme "Research Infrastructures". It is a bottom-up approach of 12 partners to provide access to and develop applications of ultra-low temperature regime.

James Romero | EurekAlert!
Further information:
http://www.ornl.gov/

More articles from Physics and Astronomy:

nachricht Merging galaxies break radio silence
28.05.2015 | ESA/Hubble Information Centre

nachricht New Technique Speeds NanoMRI Imaging
28.05.2015 | American Institute of Physics (AIP)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Siemens will provide the first H-class power plant technology in Mexico

28.05.2015 | Press release

Merging galaxies break radio silence

28.05.2015 | Physics and Astronomy

A New Kind of Wood Chip: Collaboration Could Yield Biodegradable Computer Chips

28.05.2015 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>