Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neutrons uncover new density waves in fermion liquids

29.03.2012
Scientists discover zero-sound oscillations of atomic wavelength in super-chilled helium

Scientists working at the Institut Laue-Langevin, one of the world's leading centres for neutron science, have carried out the first investigation of two-dimensional fermion liquids using neutron scattering, and discovered a new type of very short wave-length density wave. The team believe their discovery, published in Nature, will interest researchers looking at electronic systems, since high temperature superconductivity could result from this type of density fluctuations.

Fermi liquids are composed of strongly interacting fermion particles, a group that includes quarks, electrons, protons and neutrons. They are common in nature, found in atomic nuclei, metals, semiconductors, and neutron stars.

They are also one of two types of quantum liquid used to model and explain the complex interplay between atoms or even sub-atomic particles that is governed by quantum mechanics in a field known as 'many-body physics'.

Fermion particles are defined by their adherence to the Pauli Exclusion Principle that states that no two identical fermions can exist in the same energetic state, making fermion systems particularly complicated. As a result, whilst the other types of quantum liquid, composed of bosons like gluons and photons, are well understood in terms of their underlying physics, fermion liquids remain more mysterious.

As part of this on-going investigation a team of researchers from the Institut Néel (Centre national de la recherche scientifique and Université J. Fourier) in France and Aalto University in Finland (Microkelvin Collaboration), Oak Ridge National Laboratory and SUNY University at Buffalo in the US, Johannes Kepler University in Austria carried out the first direct investigation of these very short wave-length elementary excitations in a fermion liquid by inelastic neutron scattering. In their study, the neutrons were focused on a one atom thick layer of helium-3, a much rarer version of helium on Earth than helium-4 that is used in balloons and airships, which acts like a Fermi liquid at temperatures close to absolute zero.

Using this scattering technique the scientists were able to observe high frequency, very short wave-length density waves known as zero-sound oscillations. The results from the scattering experiments revealed the zero sound modes to be far longer lived in this two-dimensional fluid than those seen during previous experiments at the ILL in bulk liquids, where they were strongly damped.

The discovery of these oscillations in a fermion helium liquid is particularly interesting as it's thought that if this type of high frequency density oscillation is seen in another fermion liquid, composed of electrons, this could be a mechanism for high temperature superconductivity. Once the team have completed their investigation of the properties of the helium system, their next step is to extend this understanding to electron liquids.

Dr. Henri Godfrin, Director of research at CNRS, based at the Institut Néel, a leading laboratory for fundamental research in condensed matter physics:

"People working with electron systems will be very interested to see if this property exists in their own systems and this finding suggests it is entirely possible. This is an important discovery in the field of quantum fluids, which has direct consequences in other areas of many-body physics, particularly in understanding the makeup of metals and the physics behind neutron stars."

Contact
James Romero 44-845-680-1866 / james@proofcommunication.com
Notes to editors

1. About ILL – the Institut Laue-Langevin (ILL) is an international research centre based in Grenoble, France. It has led the world in neutron-scattering science and technology for almost 40 years, since experiments began in 1972. ILL operates one of the most intense neutron sources in the world, feeding beams of neutrons to a suite of 40 high-performance instruments that are constantly upgraded. Each year 1,200 researchers from over 40 countries visit ILL to conduct research into condensed matter physics, chemistry, biology, nuclear physics, and materials science. The UK, along with France and Germany is an associate and major funder of the ILL.

2. The European Microkelvin Collaboration - MICROKELVIN - is an EU-funded Integrating Activity project carried out in the FP7 Capacities Specific Programme "Research Infrastructures". It is a bottom-up approach of 12 partners to provide access to and develop applications of ultra-low temperature regime.

James Romero | EurekAlert!
Further information:
http://www.ornl.gov/

More articles from Physics and Astronomy:

nachricht Upside down and inside out
27.04.2015 | University of Cambridge

nachricht Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles
24.04.2015 | Korea Advanced Institute of Science and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles

KAIST researchers published an article on the development of a novel technique to precisely track the 3-D positions of optically-trapped particles having complicated geometry in high speed in the April 2015 issue of Optica.

Daejeon, Republic of Korea, April 23, 2015--Optical tweezers have been used as an invaluable tool for exerting micro-scale force on microscopic particles and...

Im Focus: NOAA, Tulane identify second possible specimen of 'pocket shark' ever found

Pocket sharks are among the world's rarest finds

A very small and rare species of shark is swimming its way through scientific literature. But don't worry, the chances of this inches-long vertebrate biting...

Im Focus: Drexel materials scientists putting a new spin on computing memory

Ever since computers have been small enough to be fixtures on desks and laps, their central processing has functioned something like an atomic Etch A Sketch, with electromagnetic fields pushing data bits into place to encode data.

Unfortunately, the same drawbacks and perils of the mechanical sketch board have been just as pervasive in computing: making a change often requires starting...

Im Focus: Exploding stars help to understand thunderclouds on Earth

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was discovered, more or less by coincidence, that cosmic rays provide suitable probes to measure electric fields within thunderclouds. This surprising finding is published in Physical Review Letters on April 24th. The measurements were performed with the LOFAR radio telescope located in the Netherlands.

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was...

Im Focus: On the trail of a trace gas

Max Planck researcher Buhalqem Mamtimin determines how much nitrogen oxide is released into the atmosphere from agriculturally used oases.

In order to make statements about current and future air pollution, scientists use models which simulate the Earth’s atmosphere. A lot of information such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL Energy Conference on May 11/12, 2015: Students Discuss about Decentralized Energy

23.04.2015 | Event News

“Developing our cities, preserving our planet”: Nobel Laureates gather for the first time in Asia

23.04.2015 | Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

 
Latest News

Strong Evidence – New Insight in Muscle Function

27.04.2015 | Life Sciences

The Future of Oil and Gas: Last of Her Kind

27.04.2015 | Power and Electrical Engineering

Tiny Lab Devices Could Attack Huge Problem of Drug-Resistant Infections

27.04.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>