Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neutrons tap into magnetism in topological insulators at high temperatures

10.05.2016

A multi-institutional team of researchers has discovered novel magnetic behavior on the surface of a specialized material that holds promise for smaller, more efficient devices and other advanced technology.


This is an illustration showing structure of Bi2Se3-EuS bilayer film. On the top layer the depth profile of the magnetization vector distribution of Eu atoms is represented by green arrows. The light purple spheres represent Bi2Se3 interfacial layers magnetized in close proximity to EuS FMI.

Credit: ORNL/Jill Hemman

Researchers at the Department of Energy's Oak Ridge National Laboratory, Massachusetts Institute of Technology and their collaborators used neutron scattering to reveal magnetic moments in hybrid topological insulator (TI) materials at room temperature, hundreds of degrees Fahrenheit warmer than the extreme sub-zero cold where the properties are expected to occur.

The discovery promises new opportunities for next-generation electronic and spintronic devices such as improved transistors and quantum computing technologies. Their research is discussed in a paper published in the journal Nature.

TIs are relatively new materials, said Valeria Lauter, coauthor and instrument scientist at the Spallation Neutron Source, a DOE Office of Science User Facility at ORNL. A unique property of TIs is that electrons can flow on the surface without dissipation, while the bulk of the material serves as an electrical insulator--ideal for semiconducting materials.

"The properties of TIs are fantastic," Lauter said, "but in order to use them in devices we need to be able to introduce magnetism on the surface without disturbing the bulk insulating properties of the material."

This can be achieved in two ways: by impurity doping, where magnetic atoms are incorporated onto the TI surface, or by proximity coupling, where magnetism is induced by interfacing the TI with a layer of ferromagnetic insulating film.

The first method presents a problem, however. Doping can cause magnetic clusters if the atoms are not uniformly distributed, resulting in decreased electron transport controllability. Proximity coupling, on the other hand, can be obtained on clean, atomically sharp interfaces with crystalline orientations between two materials.

Using the proximity coupling method, Lauter's collaborators at the Massachusetts Institute of Technology engineered hybrid bilayer heterostructures of bismuth selenide (Bi2Se3) TIs combined with a europium sulfide (EuS) ferromagnetic insulator (FMI). The definite spin directions of the FMI in proximity to the TI enable dissipation-free, spin-polarized (i.e. magnetic) electron flow in a thin layer close to the interface. That marriage forms a mutually magnetic relationship, Lauter said, though it's difficult to establish.

"The first challenge is to grow the system," she said. "The second is to measure its magnetism-- not an easy thing to do when the small magnetic signals are hidden between two materials."

The bulk EuS itself presents a particular challenge in that it's limited by a low Curie temperature (Tc), the temperature at which a material ceases to demonstrate ferromagnetic behavior--in this case a temperature of approximately 17 kelvins (17 K), or negative 430 degrees Fahrenheit, well below a suitable room temperature for electronic devices.

To identify the hidden magnetic signals, Lauter used a polarized neutron reflectometry (PNR) technique at the Magnetism Reflectometer instrument on SNS beam line 4A. Neutrons are well-suited for this type of detection because of their sensitivity to magnetism and their innate ability to pass through materials in a nondestructive fashion, elucidating structural and magnetic depth profiles. Likewise, PNR is suited to studying Bi2Se3-EuS interfaces because it is the only technique that can measure the absolute value of magnetic moments in the materials.

The first sample measurements were taken at 5 K, well below the EuS Tc of 16.6 K. From there, Lauter took measurements above the Tc, starting at 25 K, and to her surprise, the system was still highly magnetic.

"This was quite unexpected. Above this temperature [16.6 K] nothing in the system should be magnetic," Lauter said. "So I measured at 35 K, then 50 K, and it was still magnetic. I measured all the way up to room temperature [300 K, 80 F] at several points and saw that a small magnetization was still present."

Lauter notes at room temperature the level of magnetism is reduced by more than a factor of 10 compared to its 5 K value. Nevertheless, she says, it remains substantial considering no magnetism is found in EuS layers above 50 K without the TI interface.

To substantiate the results, subsequent measurements were taken using different samples with varying thickness combinations. Throughout the experiments, neutrons revealed that ferromagnetism extends approximately 2 nanometers into the Bi2Se3 from the interface.

"This discovery could open new doors for designing spintronic devices," Lauter said. "Ferromagnetic surface states in TIs are also thought to enable the emergence of exotic phenomena such as Majorana fermions--potential building blocks for quantum computers.

"These are just the properties we know of today, and we're continuing to find even more."

###

Co-authors of the paper, titled "A high-temperature ferromagnetic topological insulating phase by proximity coupling," include lead author Ferhat Katmis, Flavio S. Nogueira, Badih A. Assaf, Michelle E. Jamer, Peng Wei, Biswarup Satpati, John W. Freeland, Ilya Eremin, Don Heiman, Pablo Jarillo-Herrero, and Jagadeesh S. Moodera.

Additional contributions and complementary measurements were obtained from DOE's Argonne National Laboratory, Northeastern University, The Leibniz Institute for Solid State and Materials Research in Dresden, Ruhr University Bochum, the Saha Institute of Nuclear Physics in India, and the Department of Physics Ecole Normale Superieure in Paris.

The research conducted at ORNL's Spallation Neutron Source was supported DOE's Office of Science. The paper is available at http://www.nature.com/nature/journal/vaop/ncurrent/full/nature17635.html.

UT-Battelle manages ORNL for the DOE's Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov/.

Media Contact

Jeremy Rumsey
rumseyjp@ornl.gov
865-576-2038

 @ORNL

http://www.ornl.gov 

Jeremy Rumsey | EurekAlert!

More articles from Physics and Astronomy:

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>