Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Neutrons tap into magnetism in topological insulators at high temperatures


A multi-institutional team of researchers has discovered novel magnetic behavior on the surface of a specialized material that holds promise for smaller, more efficient devices and other advanced technology.

This is an illustration showing structure of Bi2Se3-EuS bilayer film. On the top layer the depth profile of the magnetization vector distribution of Eu atoms is represented by green arrows. The light purple spheres represent Bi2Se3 interfacial layers magnetized in close proximity to EuS FMI.

Credit: ORNL/Jill Hemman

Researchers at the Department of Energy's Oak Ridge National Laboratory, Massachusetts Institute of Technology and their collaborators used neutron scattering to reveal magnetic moments in hybrid topological insulator (TI) materials at room temperature, hundreds of degrees Fahrenheit warmer than the extreme sub-zero cold where the properties are expected to occur.

The discovery promises new opportunities for next-generation electronic and spintronic devices such as improved transistors and quantum computing technologies. Their research is discussed in a paper published in the journal Nature.

TIs are relatively new materials, said Valeria Lauter, coauthor and instrument scientist at the Spallation Neutron Source, a DOE Office of Science User Facility at ORNL. A unique property of TIs is that electrons can flow on the surface without dissipation, while the bulk of the material serves as an electrical insulator--ideal for semiconducting materials.

"The properties of TIs are fantastic," Lauter said, "but in order to use them in devices we need to be able to introduce magnetism on the surface without disturbing the bulk insulating properties of the material."

This can be achieved in two ways: by impurity doping, where magnetic atoms are incorporated onto the TI surface, or by proximity coupling, where magnetism is induced by interfacing the TI with a layer of ferromagnetic insulating film.

The first method presents a problem, however. Doping can cause magnetic clusters if the atoms are not uniformly distributed, resulting in decreased electron transport controllability. Proximity coupling, on the other hand, can be obtained on clean, atomically sharp interfaces with crystalline orientations between two materials.

Using the proximity coupling method, Lauter's collaborators at the Massachusetts Institute of Technology engineered hybrid bilayer heterostructures of bismuth selenide (Bi2Se3) TIs combined with a europium sulfide (EuS) ferromagnetic insulator (FMI). The definite spin directions of the FMI in proximity to the TI enable dissipation-free, spin-polarized (i.e. magnetic) electron flow in a thin layer close to the interface. That marriage forms a mutually magnetic relationship, Lauter said, though it's difficult to establish.

"The first challenge is to grow the system," she said. "The second is to measure its magnetism-- not an easy thing to do when the small magnetic signals are hidden between two materials."

The bulk EuS itself presents a particular challenge in that it's limited by a low Curie temperature (Tc), the temperature at which a material ceases to demonstrate ferromagnetic behavior--in this case a temperature of approximately 17 kelvins (17 K), or negative 430 degrees Fahrenheit, well below a suitable room temperature for electronic devices.

To identify the hidden magnetic signals, Lauter used a polarized neutron reflectometry (PNR) technique at the Magnetism Reflectometer instrument on SNS beam line 4A. Neutrons are well-suited for this type of detection because of their sensitivity to magnetism and their innate ability to pass through materials in a nondestructive fashion, elucidating structural and magnetic depth profiles. Likewise, PNR is suited to studying Bi2Se3-EuS interfaces because it is the only technique that can measure the absolute value of magnetic moments in the materials.

The first sample measurements were taken at 5 K, well below the EuS Tc of 16.6 K. From there, Lauter took measurements above the Tc, starting at 25 K, and to her surprise, the system was still highly magnetic.

"This was quite unexpected. Above this temperature [16.6 K] nothing in the system should be magnetic," Lauter said. "So I measured at 35 K, then 50 K, and it was still magnetic. I measured all the way up to room temperature [300 K, 80 F] at several points and saw that a small magnetization was still present."

Lauter notes at room temperature the level of magnetism is reduced by more than a factor of 10 compared to its 5 K value. Nevertheless, she says, it remains substantial considering no magnetism is found in EuS layers above 50 K without the TI interface.

To substantiate the results, subsequent measurements were taken using different samples with varying thickness combinations. Throughout the experiments, neutrons revealed that ferromagnetism extends approximately 2 nanometers into the Bi2Se3 from the interface.

"This discovery could open new doors for designing spintronic devices," Lauter said. "Ferromagnetic surface states in TIs are also thought to enable the emergence of exotic phenomena such as Majorana fermions--potential building blocks for quantum computers.

"These are just the properties we know of today, and we're continuing to find even more."


Co-authors of the paper, titled "A high-temperature ferromagnetic topological insulating phase by proximity coupling," include lead author Ferhat Katmis, Flavio S. Nogueira, Badih A. Assaf, Michelle E. Jamer, Peng Wei, Biswarup Satpati, John W. Freeland, Ilya Eremin, Don Heiman, Pablo Jarillo-Herrero, and Jagadeesh S. Moodera.

Additional contributions and complementary measurements were obtained from DOE's Argonne National Laboratory, Northeastern University, The Leibniz Institute for Solid State and Materials Research in Dresden, Ruhr University Bochum, the Saha Institute of Nuclear Physics in India, and the Department of Physics Ecole Normale Superieure in Paris.

The research conducted at ORNL's Spallation Neutron Source was supported DOE's Office of Science. The paper is available at

UT-Battelle manages ORNL for the DOE's Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit

Media Contact

Jeremy Rumsey


Jeremy Rumsey | EurekAlert!

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>