Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neutrons find 'missing' magnetism of plutonium

13.07.2015

Groundbreaking work at two Department of Energy national laboratories has confirmed plutonium's magnetism, which scientists have long theorized but have never been able to experimentally observe. The advances that enabled the discovery hold great promise for materials, energy and computing applications.

Plutonium was first produced in 1940 and its unstable nucleus allows it to undergo fission, making it useful for nuclear fuels as well as for nuclear weapons. Much less known, however, is that the electronic cloud surrounding the plutonium nucleus is equally unstable and makes plutonium the most electronically complex element in the periodic table, with intriguingly intricate properties for a simple elemental metal.


This is an artist impression of the valence-fluctuating ground state of plutonium. Due to strong interactions between the itinerant conduction electrons (denoted in purple) and the localized valence electrons in plutonium, its electronic ground state fluctuates (center panel) between three distinct electronic configurations (shown on top) that contain 4 (5f4), 5 (5f5) and 6 (5f6) 5f electrons, respectively. Because the 5f4 and, 5f5 valence configurations exhibits a magnetic moment (denoted by the arrows), whereas the 5f6 is nonmagnetic, the valence fluctuations simultaneously drive magnetic fluctuations, demonstrating that the magnetism in plutonium is not "missing" but dynamic.

Credit: Marc Janoschek/LANL

While conventional theories have successfully explained plutonium's complex structural properties, they also predict that plutonium should order magnetically. This is in stark contrast with experiments, which had found no evidence for magnetic order in plutonium.

Finally, after seven decades, this scientific mystery on plutonium's "missing" magnetism has been resolved. Using neutron scattering, researchers from the Department of Energy's Los Alamos and Oak Ridge (ORNL) national laboratories have made the first direct measurements of a unique characteristic of plutonium's fluctuating magnetism.

In a recent paper in the journal Science Advances, Marc Janoschek from Los Alamos, the paper's lead scientist, explains that plutonium is not devoid of magnetism, but in fact its magnetism is just in a constant state of flux, making it nearly impossible to detect.

"Plutonium sort of exists between two extremes in its electronic configuration--in what we call a quantum mechanical superposition," Janoschek said. "Think of the one extreme where the electrons are completely localized around the plutonium ion, which leads to a magnetic moment. But then the electrons go to the other extreme where they become delocalized and are no longer associated with the same ion anymore."

Using neutron measurements made on the ARCS instrument at ORNL's Spallation Neutron Source, a DOE Office of Science User Facility, Janoschek and his team determined that the fluctuations have different numbers of electrons in plutonium's outer valence shell--an observation that also explains abnormal changes in plutonium's volume in its different phases.

Neutrons are uniquely suited to this research as they are able to detect magnetic fluctuations.

"The fluctuations in plutonium happen on a specific time scale that no other method is sensitive to," said Janoschek.

"This is a big step forward, not only in terms of experiment but in theory as well. We successfully showed that dynamical mean field theory more or less predicted what we observed," Janoschek said. "It provides a natural explanation for plutonium's complex properties and in particular the large sensitivity of its volume to small changes in temperature or pressure."

Janoschek's research was born out of a broader endeavor to study plutonium but was met with several obstacles along the way. Plutonium is radioactive and must be handled with great care, so the approval process for this experiment lasted two years before the project was finally accepted.

Furthermore, while the science team knew that neutron spectroscopy measurements were key to making progress on plutonium's "missing" magnetism, the analysis of previous neutron efforts by other teams taught them their sample needed to be improved in two unique ways: First, typically available plutonium predominantly consists of the isotope plutonium-239, which is highly absorbent of neutrons and would obscure the weak signal they sought. The team used plutonium-242 instead, an isotope that absorbs far fewer neutrons. In addition, plutonium typically adsorbs hydrogen, which leads to strong spurious signals exactly where the magnetic signals were suspected.

"We used a special method developed at Los Alamos to remove the hydrogen from our sample," said Janoschek. "Many people across our laboratory and the complex helped solve these problems, but I'm especially grateful to Eric Bauer, Capability Leader for Materials Synthesis and Characterization in the Condensed Matter and Magnet Science group at Los Alamos, for helping me design a successful experiment."

Siegfried Hecker, former director of Los Alamos and one of the foremost international authorities on plutonium science, said, "The article by M. Janoschek, et al., is a tour de force. Through a great combination of dynamical mean field theory and experiment, neutron spectroscopy, it demonstrates that the magnetic moment in delta-plutonium is dynamic, driven by valence fluctuations, rather than missing.

"It also provides the best explanation to date as to why plutonium is so sensitive to all external perturbations - something that I have struggled to understand for 50 years now," Hecker said.

That this work yielded groundbreaking results is also reflected in the reactions of fellow scientists in the plutonium community: "More than one person has stated this is the most significant measurement on plutonium in a generation," said Lawrence Livermore National Laboratory's Program Chair for Plutonium Futures Scott McCall.

These observations not only establish a microscopic explanation for why plutonium is structurally unstable, but more broadly, suggest an improved understanding of complex, functional materials that frequently are characterized by similar electronic dichotomies.

Indeed, the dynamical mean field theory calculations used in this work have reached a new level of sophistication. Janoschek notes that the methods developed in this research promise to open the door for future investigations into those other complex materials that are considered as critical for future computing and energy applications. Janoschek and his team ran the dynamical mean field theory calculations on the Titan supercomputer located at the Oak Ridge Leadership Computing Facility (OLCF) at ORNL. Janoschek said the team used nearly 10 million core hours for their computations.

###

Janoschek's coauthors include Doug Abernathy and Mark Lumsden from ORNL; Pinaki Das, J.M. Lawrence, J. D. Thompson, J.N. Mitchell, S. Richmond, M. Ramos, F. Trouw, J.-X. Zhu and Eric Bauer from Los Alamos; G.H. Lander from the European Commission; and B. Chakrabarti, K. Haule and G. Kotliar from Rutgers University.

This research was funded by DOE's Office of Science and the Los Alamos National Laboratory Directed Research and Development program. This research used resources of the Spallation Neutron Source and Oak Ridge Leadership Computing Facility at ORNL, which are DOE Office of Science User Facilities.

About the laboratories

Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company and URS Corporation for the Department of Energy's National Nuclear Security Administration. ORNL is managed by UT-Battelle for DOE's Office of Science.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Image: http://www.ornl.gov/ornl/news/news-releases/2015/f249af5f-8fd8-47af-bb97-7c7df9d7376d

Caption: Doug Abernathy, left, ARCS instrument scientist at Oak Ridge National Laboratory, and Marc Janoschek, Los Alamos National Laboratory, prepare their sample for experiments at the Spallation Neutron Source.

Video: http://youtu.be/Xi9ov_2r99s

NOTE TO EDITORS: You may read other press releases from Oak Ridge National Laboratory or learn more about the lab at http://www.ornl.gov/news. Additional information about ORNL is available at the sites below:

Twitter - http://twitter.com/ornl
RSS Feeds - http://www.ornl.gov/ornlhome/rss_feeds.shtml
Flickr - http://www.flickr.com/photos/oakridgelab
YouTube - http://www.youtube.com/user/OakRidgeNationalLab
LinkedIn - http://www.linkedin.com/companies/oak-ridge-national-laboratory
Facebook - http://www.facebook.com/Oak.Ridge.National.Laboratory

Media Contact

Katie Bethea
betheakl@ornl.gov
865-576-8039

 @ORNL

http://www.ornl.gov 

Katie Bethea | EurekAlert!

More articles from Physics and Astronomy:

nachricht Gamma rays will reach beyond the limits of light
23.10.2017 | Chalmers University of Technology

nachricht Creation of coherent states in molecules by incoherent electrons
23.10.2017 | Tata Institute of Fundamental Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>