Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neutrons detect elusive Higgs amplitude mode in quantum material

06.07.2017

A team led by the Department of Energy's Oak Ridge National Laboratory has used sophisticated neutron scattering techniques to detect an elusive quantum state known as the Higgs amplitude mode in a two-dimensional material.

The Higgs amplitude mode is a condensed matter cousin of the Higgs boson, the storied quantum particle theorized in the 1960s and proven experimentally in 2012. It is one of a number of quirky, collective modes of matter found in materials at the quantum level. By studying these modes, condensed matter researchers have recently uncovered new quantum states known as quasiparticles, including the Higgs mode.


The ORNL-led research team selected a crystal composed of copper bromide -- because the copper ion is ideal for studying exotic quantum effects -- to observe the elusive Higgs amplitude mode in two dimensions. The sample was examined using cold neutron triple-axis spectrometer beams for neutron scattering at the High Flux Isotope Reactor.

Credit: Genevieve Martin, Oak Ridge National Laboratory/Dept. of Energy

These studies provide unique opportunities to explore quantum physics and apply its exotic effects in advanced technologies such as spin-based electronics, or spintronics, and quantum computing.

"To excite a material's quantum quasiparticles in a way that allows us to observe the Higgs amplitude mode is quite challenging," said Tao Hong, an instrument scientist with ORNL's Quantum Condensed Matter Division.

Although the Higgs amplitude mode has been observed in various systems, "the Higgs mode would often become unstable and decay, shortening the opportunity to characterize it before losing sight of it," Hong said.

The ORNL-led team offered an alternative method. The researchers selected a crystal composed of copper bromide, because the copper ion is ideal for studying exotic quantum effects, Hong explained. They began the delicate task of "freezing" the material's agitating quantum-level particles by lowering its temperature to 1.4 Kelvin, which is about minus 457.15 degrees Fahrenheit.

The researchers fine-tuned the experiment until the particles reached the phase located near the desired quantum critical point--the sweet spot where collective quantum effects spread across wide distances in the material, which creates the best conditions to observe a Higgs amplitude mode without decay.

With neutron scattering performed at ORNL's High Flux Isotope Reactor, the research team observed the Higgs mode with an infinite lifetime: no decay.

"There's an ongoing debate in physics about the stability of these very delicate Higgs modes," said Alan Tennant, chief scientist of ORNL's Neutron Sciences Directorate. "This experiment is really hard to do, especially in a two-dimensional system. And, yet, here's a clear observation, and it's stabilized."

The research team's observation provides new insights into the fundamental theories underlying exotic materials including superconductors, charge-density wave systems, ultracold bosonic systems and antiferromagnets.

"These breakthroughs are having widespread impact on our understanding of materials' behavior at the atomic scale," Hong added.

###

The study, titled, "Direct observation of the Higgs amplitude mode in a two-dimensional quantum antiferromagnet near the quantum critical point," was published in Nature Physics. It was co-authored by ORNL's Tao Hong, Sachith E. Dissanayake, Harish Agrawal and David A. (Alan) Tennant, and scientists from Shizuoka University, the National Institute of Standards and Technology, University of Maryland, University of Jordan, Clark University, Helmholtz-Zentrum Berlin for Materials and Energy and Lehrstuhl für Theoretische Physik I.

The team used cold neutron triple-axis spectrometer beams for studying exotic magnetic effects and analyzed low-energy excitations in the copper bromide compound. The unpolarized neutron scattering measurements were performed at ORNL's HFIR and at Helmholtz-Zentrum Berlin for Materials and Energy. For contrasting data from polarized neutron-scattering measurements, they also employed a high-intensity multi-axis crystal spectrometer at NIST's Center for Neutron Research.

The work performed at ORNL's HFIR, a DOE Office of Science User Facility, and was funded by the DOE Office of Science.

UT-Battelle manages ORNL for DOE's Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov/.

Media Contact

Sara Shoemaker
shoemakerms@ornl.gov
865-576-9219

 @ORNL

http://www.ornl.gov 

Sara Shoemaker | EurekAlert!

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>